IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10454-d894872.html
   My bibliography  Save this article

Application of Glass Waste on Red Ceramic to Improve Sintering

Author

Listed:
  • Geovana Delaqua

    (LAMAV—Advanced Materials Laboratory, UENF—State University of the Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil)

  • Juan Magalhães

    (LAMAV—Advanced Materials Laboratory, UENF—State University of the Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil)

  • Markssuel Marvila

    (LAMAV—Advanced Materials Laboratory, UENF—State University of the Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil)

  • Fernando Vernilli

    (DEMAR—Materials Engineering Department, Lorena Engineering School—EEL, Area I—Campinho Municipal Road, s/n°, Lorena 12602-810, SP, Brazil)

  • Sérgio Monteiro

    (Department of Materials Science, Instituto Militar de Engenharia—IME, Praça General Tibúrcio 80, Praia Vermelha, Urca, Rio de Janeiro 22290-270, RJ, Brazil)

  • Henry Colorado

    (CCComposites Laboratory, Universidad de Antioquia (UdeA), Medellín 050010, Colombia)

  • Carlos Vieira

    (LAMAV—Advanced Materials Laboratory, UENF—State University of the Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil)

Abstract

Given the current huge generation of solid waste worldwide, alternative and innovative methodologies for incorporating these materials should be encouraged elsewhere. In this context, the objective of this research is to evaluate the use of glass waste as a substitute for sand as raw material in ceramics. Formulations containing from 0% to 20% of glass waste were produced, thus replacing natural sand. Extruded and calcined specimens were produced at temperatures of 800, 900 and 1000 °C. The characterization results demonstrated the compatibility and their potential for the glass waste for improving the properties of ceramics. Results of density, water absorption and flexural strength improved when 20% of glass waste was added due to the porosity reduction, provided by the formation of a liquid phase and then by a sintering, promoted by the glass waste. This resulted in coherent properties with ceramic applications in the form of tiles and blocks, at a calcining temperature of 800 °C. On the contrary, results without glass did not reach the necessary parameters even at 1000 °C. In conclusion, the feasibility of using glass waste has been proven, which, in addition to improving the material’s properties, provides economy benefits for the ceramic industry, with the calcination process at milder temperatures.

Suggested Citation

  • Geovana Delaqua & Juan Magalhães & Markssuel Marvila & Fernando Vernilli & Sérgio Monteiro & Henry Colorado & Carlos Vieira, 2022. "Application of Glass Waste on Red Ceramic to Improve Sintering," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10454-:d:894872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10454/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10454-:d:894872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.