IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8092-d854217.html
   My bibliography  Save this article

Damage Data Analysis of Deep Coal Roadway Roof and Application of Long Anchorage and Zone Linkage Support Technology

Author

Listed:
  • Yang Wang

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Nong Zhang

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    School of Civil Engineering, Xuzhou University of Technology, Xuzhou 221018, China)

  • Wenda Wu

    (College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Juncai Cao

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Yu Guo

    (Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221008, China)

  • Donghong Duan

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

China’s energy structure mainly depends on coal resources, which will still play the dominant role in economic development in the future. With the mining depth increasing, the deep roadway construction will be exposed to a complex stress environment, increasing the difficulty of roof control and further hindering the mining activities. The problem of deep roadway excavation causing significant fracture scope of surrounding rock in and outside the anchorage zone has attracted much attention. For the large crack scope existing in the roadway roof of deep underground openings, this paper focuses on the exploration of upgrading the support system. In order to solve this problem, we investigated the zone damage of the roadway roof with the discrete element model using the UDEC trigon method and damage quantified evaluation with data analysis. The long anchorage and zone linkage support technology was proposed based on the damage control effect of varying lengths of supporting bolts. The purpose of extending the length of bolts is to link the more severely damaged rock mass in the shallow part to the minimum damaged part in the deep place, aiming to form the thick anchor zone to mobilize the rock mass in each zone to participate and bear the load together. Furthermore, the onsite application of long anchorage and zone linkage technology gained good control effects in the selected typical roadway with different geological conditions. The results show obvious resistance in cross-section shrinkage, integrity maintenance, and minimization of crack scope in the roadway roof. The promotion of long anchorage zone linkage technology can help the mine with similar situations uplift the efficiency of working and guarantee the safety of miners during mine service life in the deep coal roadway.

Suggested Citation

  • Yang Wang & Nong Zhang & Wenda Wu & Juncai Cao & Yu Guo & Donghong Duan, 2022. "Damage Data Analysis of Deep Coal Roadway Roof and Application of Long Anchorage and Zone Linkage Support Technology," Sustainability, MDPI, vol. 14(13), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8092-:d:854217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    2. Houqiang Yang & Changliang Han & Nong Zhang & Yuantian Sun & Dongjiang Pan & Changlun Sun, 2020. "Long High-Performance Sustainable Bolt Technology for the Deep Coal Roadway Roof: A Case Study," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuefei Wu & Hongxia Li & Baoli Wang & Mengbo Zhu, 2022. "Review on Improvements to the Safety Level of Coal Mines by Applying Intelligent Coal Mining," Sustainability, MDPI, vol. 14(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wadslin Frenelus & Hui Peng & Jingyu Zhang, 2022. "An Insight from Rock Bolts and Potential Factors Influencing Their Durability and the Long-Term Stability of Deep Rock Tunnels," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    2. Xiaowei Guo & Xigui Zheng & Peng Li & Rui Lian & Cancan Liu & Niaz Muhammad Shahani & Cong Wang & Boyang Li & Wenjie Xu & Guowei Lai, 2021. "Full-Stress Anchoring Technology and Application of Bolts in the Coal Roadway," Energies, MDPI, vol. 14(22), pages 1-24, November.
    3. Lugen Chen & Dong Wang & Yujing Jiang & Hengjie Luan & Guangchao Zhang & Bin Liang, 2023. "Experimental Study on Mechanical Properties and Acoustic Emission Characteristics of Dry and Water-Saturated Soft Rocks under Different Dynamic Loadings," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    4. Zhaowen Du & Shaojie Chen & Junbiao Ma & Zhongping Guo & Dawei Yin, 2020. "Gob-Side Entry Retaining Involving Bag Filling Material for Support Wall Construction," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    5. Yuantian Sun & Guichen Li & Junfei Zhang & Junbo Sun & Jiandong Huang & Reza Taherdangkoo, 2021. "New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    6. Ling Dong & Dong Wang & Xiaoming Sun & Yujing Jiang & Hengjie Luan & Huichen Xu & Baocheng Li & Feng Cai, 2023. "Large-Deformation Failure Mechanism and Stability Control of a Swelling Soft Rock Roadway in a Sea Area: A Case Study in Eastern China," Sustainability, MDPI, vol. 15(6), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8092-:d:854217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.