IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7471-d842349.html
   My bibliography  Save this article

Quantifying Raveling Using 3D Technology with Loss of Aggregates as a New Performance Indicator

Author

Listed:
  • Pingzhou (Lucas) Yu

    (School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA)

  • Yichang (James) Tsai

    (School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA)

Abstract

Pavement raveling is one of the predominant distresses in the United States that impacts roadway safety and driver comfort on open-graded friction course (OGFC) pavements. Raveling specific treatments, such as fog seal and micro-milling the OGFC layer, can prolong pavement life and reduce resurfacing costs and environmental impact. However, with the current qualitative condition assessment methods (which rate pavements at Severity Levels 1–3 or as light, moderate, or severe), it is difficult to determine the optimal timing for these raveling treatments to be most effective. Therefore, there is an urgent need to develop a method to quantitatively evaluate the raveling condition. While 3D pavement technology provides opportunities for quantifying pavement raveling conditions using 3D pavement surface data, there are two main challenges for quantifying pavement raveling: (1) estimating a reference surface that represents the pavement without any raveling so that the actual pavement can be compared to the reference surface to quantify the raveling, and (2) obtaining pavement images with quantified raveling conditions (aggregate loss volume) for validation. This paper proposes a method with the loss of aggregate as a new performance indicator to automatically quantify raveling using 3D pavement surface data already collected by transportation agencies for pavement evaluation. The proposed method is validated using pavement images (with known aggregate loss) from simulated pavement mats fabricated in the lab and synthetic pavement images obtained by procedural generation. The proposed method consists of (1) 3D data acquisition; (2) pre-processing with (a) outlier removal and image smoothing, (b) two-sensor image stitching, and (c) range image rectification; (3) raveling detection using (a) region of interest selection, (b) reference surface estimation, (c) potential aggregate loss identification, and (d) noise removal; and (4) aggregate loss quantification. The validation results show a strong correlation (R = 0.99) between the computed aggregate loss and the expected aggregate loss. Better performance was observed with the proposed method than with other methods (such as the watershed method and the model fitting method). The proposed method provides a cost-effective means to quantify the loss of aggregates in support of quantitative raveling condition forecasting by leveraging 3D pavement data already collected by transportation agencies.

Suggested Citation

  • Pingzhou (Lucas) Yu & Yichang (James) Tsai, 2022. "Quantifying Raveling Using 3D Technology with Loss of Aggregates as a New Performance Indicator," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7471-:d:842349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7471/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7471-:d:842349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.