Author
Listed:
- Young Beom Kim
(Department of Financial Information Security, Kookmin University, Seoul 02707, Korea)
- Taek-Young Youn
(Department of Industrial Security, Dankook University, Giheung-gu, Yongin-si (16891) 655, Korea)
- Seog Chung Seo
(Department of Financial Information Security, Kookmin University, Seoul 02707, Korea)
Abstract
Since the Keccak algorithm was selected by the US National Institute of Standards and Technology (NIST) as the standard SHA-3 hash algorithm for replacing the currently used SHA-2 algorithm in 2015, various optimization methods have been studied in parallel and hardware environments. However, in a software environment, the SHA-3 algorithm is much slower than the existing SHA-2 family; therefore, the use of the SHA-3 algorithm is low in a limited environment using embedded devices such as a Wireless Sensor Networks (WSN) enviornment. In this article, we propose a software optimization method that can be used generally to break through the speed limit of SHA-3. We combine the θ , π , and ρ processes into one, reducing memory access to the internal state more efficiently than conventional software methods. In addition, we present a new SHA-3 implementation for the proposed method in the most constrained environment, the 8-bit AVR microcontroller. This new implementation method, which we call the chaining optimization methodology, implicitly performs the π process of the f -function while minimizing memory access to the internal state of SHA-3. Through this, it achieves up to 26.1% performance improvement compared to the previous implementation in an AVR microcontroller and reduces the performance gap with the SHA-2 family to the maximum. Finally, we apply our SHA-3 implementation in Hash_Deterministic Random Bit Generator (Hash_DRBG), one of the upper algorithms of a hash function, to prove the applicability of our chaining optimization methodology on 8-bit AVR MCUs.
Suggested Citation
Young Beom Kim & Taek-Young Youn & Seog Chung Seo, 2021.
"Chaining Optimization Methodology: A New SHA-3 Implementation on Low-End Microcontrollers,"
Sustainability, MDPI, vol. 13(8), pages 1-20, April.
Handle:
RePEc:gam:jsusta:v:13:y:2021:i:8:p:4324-:d:535234
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4324-:d:535234. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.