IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13695-d700248.html
   My bibliography  Save this article

Durable Steel-Reinforced Concrete Structures for Marine Environments

Author

Listed:
  • Robert E. Melchers

    (Centre for Infrastructure Performance and Reliability, The University of Newcastle, Callaghan, NSW 2308, Australia)

  • Igor A. Chaves

    (Centre for Infrastructure Performance and Reliability, The University of Newcastle, Callaghan, NSW 2308, Australia)

Abstract

Even in harsh marine environments, concrete structures reinforced with steel can show excellent long-term durability, with little or no reinforcement corrosion. Very few actual reinforced concrete (RC) structures have been closely scrutinized over many years and subject to interpretation using recent state-of-the-art understanding gained from detailed laboratory observations. Such a case is described for an 80-year-old RC structure observed annually over about 30 years in what is essentially an extraordinary long experiment. Despite very high chloride concentrations, field excavation evidence showed that reinforcement corrosion overall remains minimal, except where insufficient concrete compaction permitted air-voids to initiate quite severe, very localized corrosion even with still high concrete pH. It is possible that the use of blast furnace slag as aggregate may have assisted the observed durability. The case study supports other studies that show that it is possible to achieve long-term durable and therefore sustainable RC structures without additives and using only conventional reinforcement steels and conventional cements and aggregates. However, the potential dangers of deep narrow cracking extending to the reinforcement and the potentially deleterious effects of alkali–aggregate reactivity of some aggregates needs to be considered.

Suggested Citation

  • Robert E. Melchers & Igor A. Chaves, 2021. "Durable Steel-Reinforced Concrete Structures for Marine Environments," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13695-:d:700248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13695/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13695-:d:700248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.