IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9502-d620530.html
   My bibliography  Save this article

Design, Modeling, and Differential Flatness Based Control of Permanent Magnet-Assisted Synchronous Reluctance Motor for e-Vehicle Applications

Author

Listed:
  • Songklod Sriprang

    (Groupe de Recherche en Energie Electrique de Nancy (GREEN), Université de Lorraine, F-54000 Nancy, France
    Renewable Energy Research Centre (RERC), Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand)

  • Nitchamon Poonnoy

    (Renewable Energy Research Centre (RERC), Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand)

  • Damien Guilbert

    (Groupe de Recherche en Energie Electrique de Nancy (GREEN), Université de Lorraine, F-54000 Nancy, France)

  • Babak Nahid-Mobarakeh

    (Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada)

  • Noureddine Takorabet

    (Groupe de Recherche en Energie Electrique de Nancy (GREEN), Université de Lorraine, F-54000 Nancy, France)

  • Nicu Bizon

    (Faculty of Electronics, Communications and Computers, University of Pitesti, 110040 Pitesti, Romania)

  • Phatiphat Thounthong

    (Renewable Energy Research Centre (RERC), Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand)

Abstract

This paper presents the utilization of differential flatness techniques from nonlinear control theory to permanent magnet assisted (PMa) synchronous reluctance motor (SynRM). The significant advantage of the proposed control approach is the potentiality to establish the behavior of the state variable system during the steady-state and transients operations as well. The mathematical models of PMa-SynRM are initially proved by the nonlinear case to show the flatness property. Then, the intelligent proportional-integral (iPI) is utilized as a control law to deal with some inevitable modeling errors and uncertainties for the torque and speed of the motor. Finally, a MicroLab Box dSPACE has been employed to implement the proposed control scheme. A small-scale test bench 1-KW relying on the PMa-SynRM has been designed and developed in the laboratory to approve the proposed control algorithm. The experimental results reflect that the proposed control effectively performs high performance during dynamic operating conditions for the inner torque loop control and outer speed loop control of the motor drive compared to the traditional PI control.

Suggested Citation

  • Songklod Sriprang & Nitchamon Poonnoy & Damien Guilbert & Babak Nahid-Mobarakeh & Noureddine Takorabet & Nicu Bizon & Phatiphat Thounthong, 2021. "Design, Modeling, and Differential Flatness Based Control of Permanent Magnet-Assisted Synchronous Reluctance Motor for e-Vehicle Applications," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9502-:d:620530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felix Veeser & Tristan Braun & Lothar Kiltz & Johannes Reuter, 2021. "Nonlinear Modelling, Flatness-Based Current Control, and Torque Ripple Compensation for Interior Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 14(6), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songklod Sriprang & Nitchamon Poonnoy & Babak Nahid-Mobarakeh & Noureddine Takorabet & Nicu Bizon & Pongsiri Mungporn & Phatiphat Thounthong, 2022. "Design, Modeling, and Model-Free Control of Permanent Magnet-Assisted Synchronous Reluctance Motor for e-Vehicle Applications," Sustainability, MDPI, vol. 14(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Jastrzębski & Jacek Kabziński, 2021. "Approximation of Permanent Magnet Motor Flux Distribution by Partially Informed Neural Networks," Energies, MDPI, vol. 14(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9502-:d:620530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.