IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7090-d581144.html
   My bibliography  Save this article

Numerical Study of the Strength and Characteristics of Sandstone Samples with Combined Double Hole and Double Fissure Defects

Author

Listed:
  • Junbiao Ma

    (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, China)

  • Ning Jiang

    (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, China)

  • Xujun Wang

    (Jining No.3 Coal Mine, Yanzhou Coal Mining Company Limited, Jining 272100, China)

  • Xiaodong Jia

    (Jining No.3 Coal Mine, Yanzhou Coal Mining Company Limited, Jining 272100, China)

  • Dehao Yao

    (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

To explore the failure mechanism of rock with holes and fissures, uniaxial compression tests of sandstone samples with combined double hole and double fissure defects were carried out using Particle Flow Code 2D (PFC2D) numerical simulation software. The failure behaviour and mechanical properties of the sandstone samples with combined double hole and double fissure defects at different angles were analysed, and the evolution results of the stress field and crack propagation were studied. The results show that with a decrease in fissure angle, the crack initiation stress, damage stress, elastic modulus and peak stress of the defective rock decrease, while the peak strain increases, and the brittleness of the rock is weakened. Rocks with combined double hole and double fissure defects at different angles lead to different failure modes, crack initiation positions and crack development directions. After uniaxial compression, both compressive stress and tensile stress concentration areas are produced in the defective rock, but the compressive stress concentration is of primary importance. The concentration area is mainly distributed around the holes and fissures and the defect connecting line, and the stress concentration area decreases with the decreasing fissure angle. This study can correctly predict the mechanical properties of rock with combined double hole and double fissure defects at different angles and provide a reference for actual rock engineering.

Suggested Citation

  • Junbiao Ma & Ning Jiang & Xujun Wang & Xiaodong Jia & Dehao Yao, 2021. "Numerical Study of the Strength and Characteristics of Sandstone Samples with Combined Double Hole and Double Fissure Defects," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7090-:d:581144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7090/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7090/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuantian Sun & Guichen Li & Junfei Zhang & Jiahui Xu, 2020. "Failure Mechanisms of Rheological Coal Roadway," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    2. Zhen Cui & Qian Sheng & Qingzi Luo & Guimin Zhang, 2021. "Investigating the Anisotropy of Mechanical Parameters of Schist Rock with Practical Numerical Methods," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    3. Wei Chen & Wen Wan & Yanlin Zhao & Wenqing Peng, 2020. "Experimental Study of the Crack Predominance of Rock-Like Material Containing Parallel Double Fissures under Uniaxial Compression," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    4. Houqiang Yang & Nong Zhang & Changliang Han & Changlun Sun & Guanghui Song & Yuantian Sun & Kai Sun, 2021. "Stability Control of Deep Coal Roadway under the Pressure Relief Effect of Adjacent Roadway with Large Deformation: A Case Study," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Jiang & Ke Lv & Zhiyou Gao & Huixin Di & Junbiao Ma & Tianyi Pan, 2022. "Study on Characteristics of Overburden Strata Structure above Abandoned Gob of Shallow Seams—A Case Study," Energies, MDPI, vol. 15(24), pages 1-22, December.
    2. Yakang Li & Jiangwei Liu & Qian Yu, 2022. "Patterns of Influence of Parallel Rock Fractures on the Mechanical Properties of the Rock–Coal Combined Body," Sustainability, MDPI, vol. 14(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuantian Sun & Guichen Li & Junfei Zhang & Junbo Sun & Jiandong Huang & Reza Taherdangkoo, 2021. "New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    2. Bo Hu & Xiangqi Hu & Chenggeng Lin & Guangzhen Du & Tianxing Ma & Kaihui Li, 2023. "Evolution of Physical and Mechanical Properties of Granite after Thermal Treatment under Cyclic Uniaxial Compression," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    3. Tuo Wang & Jucai Chang & Yijun Guo, 2023. "Study on Deformation Characteristics of Surrounding Rock of Roadway with Coal–Rock Interface," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    4. Marek Jendryś & Andrzej Hadam & Mateusz Ćwiękała, 2021. "Directional Hydraulic Fracturing (DHF) of the Roof, as an Element of Rock Burst Prevention in the Light of Underground Observations and Numerical Modelling," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Kuidong Gao & Jihai Liu & Hong Chen & Xu Li & Shuan Huang, 2023. "Dynamic Characteristics of Rock Holes with Gravel Sediment Drilled by Bit Anchor Cable Drilling," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    6. Longjun Dong & Yanlin Zhao & Wenxue Chen, 2022. "Mining Safety and Sustainability—An Overview," Sustainability, MDPI, vol. 14(11), pages 1-6, May.
    7. Fan Feng & Zhiwei Xie & Tianxi Xue & Eryu Wang & Ruifeng Huang & Xuelong Li & Shixian Gao, 2023. "Application of a Combined FEM/DEM Approach for Teaching a Deep Rock Mass Mechanics Course," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    8. Qingliang Chang & Yifeng Sun & Qiang Leng & Zexu Liu & Huaqiang Zhou & Yuantian Sun, 2021. "Stability Analysis of Paste Filling Roof by Cut and Fill Mining," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    9. Sen Yang & Guichen Li & Ruiyang Bi & Bicheng Yao & Ruiguang Feng & Yuantian Sun, 2021. "The Stability of Roadway Groups under Rheology Coupling Mining Disturbance," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    10. Yuxi Hao & Mingliang Li & Wen Wang & Zhizeng Zhang & Zhun Li, 2023. "Study on the Stress Distribution and Stability Control of Surrounding Rock of Reserved Roadway with Hard Roof," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    11. Dongdong Chen & Zhiqiang Wang & Zaisheng Jiang & Shengrong Xie & Zijian Li & Qiucheng Ye & Jingkun Zhu, 2023. "Research on J 2 Evolution Law and Control under the Condition of Internal Pressure Relief in Surrounding Rock of Deep Roadway," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    12. Zexin Li & Yidong Zhang & Qi Ma & Yu Zheng & Guangyuan Song & Wanzi Yan & Yu Zhang & Lei Hu, 2023. "The Floor Heave Mechanism and Control Technology of Gob-Side Entry Retaining of Soft Rock Floor," Sustainability, MDPI, vol. 15(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7090-:d:581144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.