IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2588-d336697.html
   My bibliography  Save this article

Application of Bolter Miner Rapid Excavation Technology in Deep Underground Roadway in Inner Mongolia: A Case Study

Author

Listed:
  • Peng Ma

    (Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan)

  • Deyu Qian

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Nong Zhang

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Hideki Shimada

    (Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan)

  • Dongjiang Pan

    (State Key Laboratory of Shield Machine and Boring Technology, China Railway Tunnel Group Co., Ltd., Zhengzhou 450001, China)

  • Kejun Huang

    (Shaanxi Coal and Chemical Technology Institute Company Limited, Xi’an 710070, China)

Abstract

Rapid excavation could mitigate the imbalance relationship between excavation speed and production needs that plays a pivotal role in the sustainable development of large underground coal mines. This paper provides a case study on Bolter Miner Rapid Excavation Technology (BMRET) in Menkeqing Coal Mine, which has a high production of 13 million tons per year in Inner Mongolia. The temporal characterization of excavation procedures is analyzed in detail based on field monitoring data. The improvement of the roadway driving process and efficiency under a new support design is introduced, and corresponding evaluation methods, including parallel operation index ( P x ) and unit drilling-hole index ( D x ), are proposed for BMRET. A field application is conducted to verify the effectiveness of the improved BMRET, which fully considers the structure characteristic of the bolter miner machine. The performance and reliability of this new support scheme are monitored in terms of roadway convergence and axial force of cable through professional instrumentation programs in the field. The results show that the average excavation speed of the BMRET is 36.15 m/day (1080 m/month), an increase of 99.72% compared with the original excavation technology, which indicates that the BMRET could provide high efficiency in roadway excavation and effectively control the stability of deep roadways. It is pivotal to apply BMRET to ensure sustainable and highly efficient coal production. This case study provides reference and guidance for rapid excavation of deep underground roadways with similar geological conditions.

Suggested Citation

  • Peng Ma & Deyu Qian & Nong Zhang & Hideki Shimada & Dongjiang Pan & Kejun Huang, 2020. "Application of Bolter Miner Rapid Excavation Technology in Deep Underground Roadway in Inner Mongolia: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2588-:d:336697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengzheng Xie & Nong Zhang & Deyu Qian & Changliang Han & Yanpei An & Yang Wang, 2018. "Rapid Excavation and Stability Control of Deep Roadways for an Underground Coal Mine with High Production in Inner Mongolia," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengjun Hu & Changliang Han & Lixin Wang & Baofu Zhao & Houqiang Yang, 2022. "Cooperative Control Mechanism of Efficient Driving and Support in Deep-Buried Thick Top-Coal Roadway: A Case Study," Energies, MDPI, vol. 15(12), pages 1-20, June.
    2. Chao Su & Pengfei Jiang & Peilin Gong & Chang Liu & Peng Li & Yuedong Liu, 2022. "Analysis of Roof Stability of Coal Roadway Heading Face," Energies, MDPI, vol. 15(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyue Xu & Minfu Liang & Xinqiu Fang & Gang Wu & Ningning Chen & Yang Song, 2022. "Research on Autonomous Cutting Method of Cantilever Roadheader," Energies, MDPI, vol. 15(17), pages 1-14, August.
    2. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    3. Zhaowen Du & Shaojie Chen & Junbiao Ma & Zhongping Guo & Dawei Yin, 2020. "Gob-Side Entry Retaining Involving Bag Filling Material for Support Wall Construction," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    4. Zhengzheng Xie & Nong Zhang & Yuxin Yuan & Guang Xu & Qun Wei, 2019. "Study on Safety Control of Composite Roof in Deep Roadway Based on Energy Balance Theory," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    5. Jianjun Wu & Ziyue Xu & Xinqiu Fang & Guangliang Shi & Haiyan Wang, 2022. "Research on Path Planning and Control Method for Secondary Autonomous Cutting of Cantilever Roadheader in a Large-Section Coal Roadway," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    6. Tieliang An & Xigui Zheng & Dengxing Zhu & Deyu Qian & Yu Guo & Juncai Cao, 2019. "Experimental investigation of pretensioned bolts under cyclic loading: Damage assessment using acoustic emission," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2588-:d:336697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.