IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1587-d322928.html
   My bibliography  Save this article

Structural Changes of Compacted Soil Layers in Northeast China due to Freezing-Thawing Processes

Author

Listed:
  • Li Wang

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Hengfei Wang

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Zhengchao Tian

    (College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)

  • Yili Lu

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Weida Gao

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Tusheng Ren

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

Abstract

Soil compaction has become a global concern that reduces soil quality and may jeopardize agricultural sustainability. The objective of this study is to evaluate if the freezing–thawing process can alleviate the negative effects of soil compaction during overwinter time in Northeast China. The field experiment was a split plot design including two surface treatments (bare and mulch) and three compaction levels (low, moderate, and high compactions with initial bulk densities of 1.2, 1.4 and 1.6 g cm −3 ). Results showed that compared with initial values in the fall, freezing–thawing events increased soil porosity (by 4.28% to 25.68%) and the ratio of large-size pores (by 44.5% to 387.6%) after thawing in the spring. The greatest changes were observed in the high compaction treatment, and mulch-enhanced soil structural transformation. Additionally, the ratio of large-size aggregates (>1 mm) was increased and the fraction of small-size aggregates (<1 mm) was decreased. These changes in soil structural characteristics were attributed mainly to the modification of ice-filled pores space during the overwinter period. We concluded that the freezing–thawing process was an effective natural force for ameliorating soil compaction in Northeast China.

Suggested Citation

  • Li Wang & Hengfei Wang & Zhengchao Tian & Yili Lu & Weida Gao & Tusheng Ren, 2020. "Structural Changes of Compacted Soil Layers in Northeast China due to Freezing-Thawing Processes," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1587-:d:322928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. Hallet & J. S. Walder & C. W. Stubbs, 1991. "Weathering by segregation ice growth in microcracks at sustained subzero temperatures: Verification from an experimental study using acoustic emissions," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 2(4), pages 283-300, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jay D. Jabro & Brett L. Allen & Tatyana Rand & Sadikshya R. Dangi & Joshua W. Campbell, 2021. "Effect of Previous Crop Roots on Soil Compaction in 2 Yr Rotations under a No-Tillage System," Land, MDPI, vol. 10(2), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martyna E. Górska & Barbara Woronko & Tomasz M. Kossowski, 2023. "Factors influencing the development of microtextures on cold‐climate aeolian quartz grains revealed by experimental frost action," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 34(2), pages 259-283, April.
    2. Ferdinando Musso Piantelli & Marco Herwegh & Flavio S. Anselmetti & Marius Waldvogel & Ueli Gruner, 2020. "Microfracture propagation in gneiss through frost wedging: insights from an experimental study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 843-860, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1587-:d:322928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.