IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7358-d410435.html
   My bibliography  Save this article

An Energy Efficient Routing Approach for Cloud-Assisted Green Industrial IoT Networks

Author

Listed:
  • Khadak Singh Bhandari

    (Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea)

  • GI Hwan Cho

    (Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea)

Abstract

The green industrial Internet of things (IIoT) is emerging as a new paradigm, which envisions the concept of connecting different devices and reducing energy consumption. In multi-hop low power and lossy network, a resource-constrained node should aware of its energy consumption while routing the data packets. As part of IoT, the routing protocol for low power and lossy network (RPL) is considered to be a default routing standard. Recently, RPL has gained a significant maturity, but still, energy optimization is one of the main issues, because the default objective function (OF), which makes routing decision mainly based on a single parameter, such as link quality, and ignores the energy cost. Therefore, this paper aims to consider the concept of green IIoT concerning how a routing approach can achieve energy efficiency in resource-constrained IoT networks. For this, we propose a resource aware and reliable OF (RAROF), which constructs an optimum routing path by exploiting the information regarding the duty cycle, link quality, energy condition, and resource availability of a node. In addition, we propose node vulnerability index (NVI), a new routing metric that identifies the vulnerable nodes in terms of energy. To deal with the diverse data traffic of the IIoT network, we implement a multi-queuing based traffic differentiation approach that ensures the application requirements. The extensive simulation results show that the proposed RAROF can effectively extend the lifetime of the network, enhance the energy efficiency, and achieve higher reliability than that of other OFs. In this way, RAROF makes a routing decision with the purpose of extending network lifetime and minimizing energy depletion, paving the way towards green IIoT.

Suggested Citation

  • Khadak Singh Bhandari & GI Hwan Cho, 2020. "An Energy Efficient Routing Approach for Cloud-Assisted Green Industrial IoT Networks," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7358-:d:410435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saurabh Singh & In-Ho Ra & Weizhi Meng & Maninder Kaur & Gi Hwan Cho, 2019. "SH-BlockCC: A secure and efficient Internet of things smart home architecture based on cloud computing and blockchain technology," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. M. N. Hassan & Liam Murphy & Robert Stewart, 2016. "Traffic differentiation and dynamic duty cycle adaptation in IEEE 802.15.4 beacon enabled WSN for real-time applications," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(2), pages 303-317, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yehia Ibrahim Alzoubi & Ahmad Al-Ahmad & Hasan Kahtan & Ashraf Jaradat, 2022. "Internet of Things and Blockchain Integration: Security, Privacy, Technical, and Design Challenges," Future Internet, MDPI, vol. 14(7), pages 1-48, July.
    2. Firuz Kamalov & Behrouz Pourghebleh & Mehdi Gheisari & Yang Liu & Sherif Moussa, 2023. "Internet of Medical Things Privacy and Security: Challenges, Solutions, and Future Trends from a New Perspective," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    3. Muhammad Yanuar Ary Saputro & Riri Fitri Sari, 2021. "Performance Evaluation of Broadcast Domain on the Lightweight Multi-Fog Blockchain Platform for a LoRa-Based Internet of Things Network," Energies, MDPI, vol. 14(8), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7358-:d:410435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.