IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6753-d291942.html
   My bibliography  Save this article

The Push-Over Test and Numerical Analysis Study on the Mechanical Behavior of the GFRP Frame for Sustainable Prefabricated Houses

Author

Listed:
  • Yeou-Fong Li

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Jian-Yu Lai

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Chung-Cheng Yu

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

The glass fiber reinforced plastics (GFRP) composite material is a low carbon emission, low life cycle cost, and sustainable material. In this paper, the structural behavior of the lateral force resistant performance of GFRP composite material frames with steel joints was presented, and the energy dissipation and failure modes of the GFRP frames were discussed. A total of six GFRP frames, including single-span and double-span frames with and without diagonal bracing members, were tested by pushover tests to obtain the lateral load-displacement relationships of the GFRP frames. The force-displacement relationship and the energy dissipation of the GFRP frames were examined in the pushover test. In addition, the numerical analysis was performed to obtain the lateral load-displacement relationships of the GFRP frames under pushover tests. When the numerical analysis results and the experimental results were compared, the absolute average errors of the maximum loads were less than 4%, and the lateral load-displacement relationships were close to each other. The numerical analysis results can predict the experimental force-displacement relationships of the GFRP frames.

Suggested Citation

  • Yeou-Fong Li & Jian-Yu Lai & Chung-Cheng Yu, 2019. "The Push-Over Test and Numerical Analysis Study on the Mechanical Behavior of the GFRP Frame for Sustainable Prefabricated Houses," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6753-:d:291942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yeou-Fong Li & Habib Armel Meda & Walter Chen, 2018. "The Design and Analysis of Internally Stiffened GFRP Tubular Decks—A Sustainable Solution," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    2. Yu Tang & Zeyang Sun & Gang Wu, 2019. "Compressive Behavior of Sustainable Steel-FRP Composite Bars with Different Slenderness Ratios," Sustainability, MDPI, vol. 11(4), pages 1-16, February.
    3. Yeou-Fong Li & Tseng-Hsing Hsu & Fu-Chr Hsieh, 2019. "A Study on Improving the Mechanical Behaviors of the Pultruded GFRP Composite Material Members," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goran Vizentin & Darko Glujić & Vedrana Špada, 2021. "Effect of Time-Real Marine Environment Exposure on the Mechanical Behavior of FRP Composites," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    2. Guangkai Wei & Kunkun Fu & Yuan Chen, 2022. "Crashworthiness and Failure Analyses of FRP Composite Tubes under Low Velocity Transverse Impact," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    3. Mohammadamin Mirdarsoltany & Alireza Rahai & Farzad Hatami & Reza Homayoonmehr & Farid Abed, 2021. "Investigating Tensile Behavior of Sustainable Basalt–Carbon, Basalt–Steel, and Basalt–Steel-Wire Hybrid Composite Bars," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    4. Yu Tang & Zeyang Sun & Gang Wu, 2019. "Compressive Behavior of Sustainable Steel-FRP Composite Bars with Different Slenderness Ratios," Sustainability, MDPI, vol. 11(4), pages 1-16, February.
    5. Omid Zabihi & Mojtaba Ahmadi & Chao Liu & Roya Mahmoodi & Quanxiang Li & Mahmoud Reza Ghandehari Ferdowsi & Minoo Naebe, 2020. "A Sustainable Approach to the Low-Cost Recycling of Waste Glass Fibres Composites towards Circular Economy," Sustainability, MDPI, vol. 12(2), pages 1-10, January.
    6. Mostafa Kazemi & Mohammad Daneshfar & Yousef Zandi & Alireza Sadighi Agdas & Negin Yousefieh & Leili Mohammadifar & Aida Rahmani & Mohammad Saberian & Amr Mamdouh & Mohamed Amine Khadimallah & Jie Li, 2022. "Effects of the Concrete Strength and FRP Reinforcement Type on the Non-Linear Behavior of Concrete Deep Beams," Sustainability, MDPI, vol. 14(7), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6753-:d:291942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.