IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v13y2025i9p166-d1737871.html
   My bibliography  Save this article

Robust Tail Risk Estimation in Cryptocurrency Markets: Addressing GARCH Misspecification with Block Bootstrapping

Author

Listed:
  • Christos Christodoulou-Volos

    (Department of Economics and Business, Neapolis University Pafos, Pafos P.O. Box 8042, Cyprus)

Abstract

This study examines the use of Filtered Historical Simulation (FHS) to estimate tail risk in cryptocurrency markets for the optimization of robustness in this area under model misspecification. An ARMA-GARCH model is employed on the daily returns on Binance Coin and Litecoin in order to compare the performance of classical and block bootstrap procedures in residual risk. Diagnostic tests indicate that standardized residuals are dependent, contrary to the independent and identically distributed ( i.i.d. ) assumption of conventional FHS. Comparing the block and ordinary bootstrapping approaches, we find that block bootstrap produces wider, more conservative confidence intervals, particularly in extreme tails (e.g., 0.1% and 99.9% percentiles). The findings suggest that block bootstrapping can be employed as a correction instrument in risk modeling where the standard volatility filters do not work. The article highlights the necessity to account for remaining dependencies and offers practical recommendations for more robust tail risk estimation during volatile markets.

Suggested Citation

  • Christos Christodoulou-Volos, 2025. "Robust Tail Risk Estimation in Cryptocurrency Markets: Addressing GARCH Misspecification with Block Bootstrapping," Risks, MDPI, vol. 13(9), pages 1-19, August.
  • Handle: RePEc:gam:jrisks:v:13:y:2025:i:9:p:166-:d:1737871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/13/9/166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/13/9/166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acereda, Beatriz & Leon, Angel & Mora, Juan, 2020. "Estimating the expected shortfall of cryptocurrencies: An evaluation based on backtesting," Finance Research Letters, Elsevier, vol. 33(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascal Bruhn & Dietmar Ernst, 2022. "Assessing the Risk Characteristics of the Cryptocurrency Market: A GARCH-EVT-Copula Approach," JRFM, MDPI, vol. 15(8), pages 1-28, August.
    2. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    3. Thabani Ndlovu & Delson Chikobvu, 2024. "The GARCH-EVT-Copula Approach to Investigating Dependence and Quantifying Risk in a Portfolio of Bitcoin and the South African Rand," JRFM, MDPI, vol. 17(11), pages 1-16, November.
    4. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    5. Klender Cortez & Martha del Pilar Rodríguez-García & Samuel Mongrut, 2020. "Exchange Market Liquidity Prediction with the K-Nearest Neighbor Approach: Crypto vs. Fiat Currencies," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
    6. Cheng, Jiyang & Tiwari, Sunil & Khaled, Djebbouri & Mahendru, Mandeep & Shahzad, Umer, 2024. "Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    7. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    8. Larbi Ait-Hennani & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Nonparametric Estimation of the Expected Shortfall Regression for Quasi-Associated Functional Data," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    9. Müller, Fernanda Maria & Santos, Samuel Solgon & Gössling, Thalles Weber & Righi, Marcelo Brutti, 2022. "Comparison of risk forecasts for cryptocurrencies: A focus on Range Value at Risk," Finance Research Letters, Elsevier, vol. 48(C).
    10. Ke, Rui & Yang, Luyao & Tan, Changchun, 2022. "Forecasting tail risk for Bitcoin: A dynamic peak over threshold approach," Finance Research Letters, Elsevier, vol. 49(C).
    11. José Almeida & Tiago Cruz Gonçalves, 2022. "A Systematic Literature Review of Volatility and Risk Management on Cryptocurrency Investment: A Methodological Point of View," Risks, MDPI, vol. 10(5), pages 1-18, May.
    12. Lucas Mussoi Almeida & Fernanda Maria Müller & Marcelo Scherer Perlin, 2025. "Risk Forecasting Comparisons in Decentralized Finance: An Approach in Constant Product Market Makers," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 395-428, January.
    13. Karimi, Parinaz & Mirzaee Ghazani, Majid & Ebrahimi, Seyed Babak, 2023. "Analyzing spillover effects of selected cryptocurrencies on gold and brent crude oil under COVID-19 pandemic: Evidence from GJR-GARCH and EVT copula methods," Resources Policy, Elsevier, vol. 85(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:9:p:166-:d:1737871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.