IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i2p14-d736334.html
   My bibliography  Save this article

Assessment of Rainwater Retention Efficiency in Urban Drainage Systems—Model Studies

Author

Listed:
  • Kamil Pochwat

    (Department of Infrastructure and Water Management, The Faculty of Civil Environmental Engineering and Architecture, Rzeszow University of Technology, Av. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

Abstract

Around the world, there is growing interest in the use of rainwater retention, and in particular channel retention, as part of urban drainage systems. This is made possible by means of intentional damming of rainwater in the existing sewer collectors in order to maximise the use of gravitational spaces in the channels. This approach is particularly favourable for drainage types related to high levels of urban development, where construction of a building is difficult due to the low amount of space available. This article explains the results of a study concerning the efficiency assessment of three retention devices characterised by different hydraulic systems, one of which uses channel retention in its operation. The analysis conducted within the simulation study has demonstrated that the use of standard single-chamber reservoirs is the least efficient solution. A comparison of the functions of different hydraulic systems of retention reservoirs under equal conditions has shown that the necessary retention capacity of a single-chamber reservoir is many times greater in comparison to highly efficient solutions and it may constitute up to 582% of the reservoir’s capacity and works in conjunction with the channel retention system. At the same time, it has been demonstrated that the application of channel retention is not the most efficient solution for all hydraulic conditions for a drainage system or for all hydrological conditions. In addition, the article proposes a set of retention efficiency indices that may be used in the future assessment of individual rainwater storage solutions. Estimation of the necessary capacity of the retention facilities operating in specific hydraulic conditions was made on the basis of model tests—hydrodynamic modelling with the use of SWMM 5.0 software. The course of the research was planned using the theory of experiment planning (DOE) with the use of Statistica software, whereas efficiency indices were developed with the use of artificial neural networks (ANNs). The study results include practical and cognitive aspects. These may constitute guidelines for the designers and potential investors, as well as a tool with the aim of promoting the most efficient rainwater retention solutions in urban drainage systems.

Suggested Citation

  • Kamil Pochwat, 2022. "Assessment of Rainwater Retention Efficiency in Urban Drainage Systems—Model Studies," Resources, MDPI, vol. 11(2), pages 1-23, January.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:14-:d:736334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/2/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/2/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beata Piotrowska & Daniel Słyś & Sabina Kordana-Obuch & Kamil Pochwat, 2020. "Critical Analysis of the Current State of Knowledge in the Field of Waste Heat Recovery in Sewage Systems," Resources, MDPI, vol. 9(6), pages 1-14, June.
    2. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    3. Daniel Słyś & Agnieszka Stec, 2020. "Centralized or Decentralized Rainwater Harvesting Systems: A Case Study," Resources, MDPI, vol. 9(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Stec & Daniel Słyś, 2023. "New Bioretention Drainage Channel as One of the Low-Impact Development Solutions: A Case Study from Poland," Resources, MDPI, vol. 12(7), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabina Kordana-Obuch & Mariusz Starzec, 2020. "Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates," Resources, MDPI, vol. 9(9), pages 1-20, September.
    2. Mariusz Starzec & Józef Dziopak, 2020. "A Case Study of the Retention Efficiency of a Traditional and Innovative Drainage System," Resources, MDPI, vol. 9(9), pages 1-19, September.
    3. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    4. Anna Lempart-Rapacewicz & Julia Zakharova & Edyta Kudlek, 2023. "Rainwater Quality Analysis for Its Potential Recovery: A Case Study on Its Usage for Swimming Pools in Poland," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    5. Katarzyna Ratajczak & Łukasz Amanowicz & Katarzyna Pałaszyńska & Filip Pawlak & Joanna Sinacka, 2023. "Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review," Energies, MDPI, vol. 16(17), pages 1-55, August.
    6. Beata Piotrowska & Daniel Słyś, 2022. "Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water," Energies, MDPI, vol. 16(1), pages 1-20, December.
    7. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    8. Sabina Kordana-Obuch & Mariusz Starzec & Beata Piotrowska, 2024. "Harnessing Artificial Neural Networks for Financial Analysis of Investments in a Shower Heat Exchanger," Energies, MDPI, vol. 17(14), pages 1-24, July.
    9. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    10. Mariusz Starzec & Sabina Kordana-Obuch & Daniel Słyś, 2023. "Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area," Sustainability, MDPI, vol. 15(10), pages 1-43, May.
    11. Krzysztof Boryczko & Janusz Rak, 2020. "Method for Assessment of Water Supply Diversification," Resources, MDPI, vol. 9(7), pages 1-15, July.
    12. Edyta Dudkiewicz & Agnieszka Ludwińska, 2023. "Family Dwelling House Localization in Poland as a Factor Influencing the Economic Effect of Rainwater Harvesting System with Underground Tank," Sustainability, MDPI, vol. 15(13), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:14-:d:736334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.