IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v10y2021i6p58-d570295.html
   My bibliography  Save this article

Hydrometallurgical Process to Recover Cobalt from Spent Li-Ion Batteries

Author

Listed:
  • Neila Djoudi

    (Laboratoire Réactions et Génie des Procédés (LRGP) UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville BP20451, 54001 Nancy, France)

  • Marie Le Page Mostefa

    (Laboratoire Réactions et Génie des Procédés (LRGP) UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville BP20451, 54001 Nancy, France)

  • Hervé Muhr

    (Laboratoire Réactions et Génie des Procédés (LRGP) UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville BP20451, 54001 Nancy, France)

Abstract

The growth of the lithium-ion battery industry requires a secure supply of raw materials and appropriate end-of-life management of batteries. In almost five years, global cobalt consumption has increased by nearly 30%, driven mainly by rechargeable batteries. Consequently, several risks have been identified for cobalt, in particular the growing demand for electric vehicles, which could exceed current production. Therefore, research into the recovery of this critical metal, from industrial or urban waste, is particularly important in the years to come. In this study, cobalt is recovered from a lithium-ion battery leachate in hydroxide form. The thermodynamic simulations performed with Visual Minteq showed that it was possible to recover 99.8% of cobalt (II) hydroxide at 25 °C. Based on these results, experiments were conducted to validate the hypotheses put forward and to compare the results obtained with the simulations performed. Experimentally, several operating parameters were studied to determine the optimal conditions for cobalt recovery, in terms of yield, filterability, and selectivity. Results obtained in a batch reactor allowed the determination of the temperature conditions to be applied in continuous reactor. The cobalt (II) hydroxide precipitation in continuous reactor was carried out under different pH conditions. It was then possible to determine the optimal conditions for cobalt recovery in terms of yield and filterability. Results showed that working at pH 9 would effectively meet the desired criteria. Indeed, cobalt recovery is close to 100% and filtration flow rate is three times higher. Results obtained allow a better understanding of cobalt (II) hydroxide precipitation.

Suggested Citation

  • Neila Djoudi & Marie Le Page Mostefa & Hervé Muhr, 2021. "Hydrometallurgical Process to Recover Cobalt from Spent Li-Ion Batteries," Resources, MDPI, vol. 10(6), pages 1-14, June.
  • Handle: RePEc:gam:jresou:v:10:y:2021:i:6:p:58-:d:570295
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/10/6/58/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/10/6/58/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:10:y:2021:i:6:p:58-:d:570295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.