IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1392-d575405.html
   My bibliography  Save this article

Collaborative Co-Attention Network for Session-Based Recommendation

Author

Listed:
  • Wanyu Chen

    (Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China)

  • Honghui Chen

    (Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China)

Abstract

Session-based recommendation aims to model a user’s intent and predict an item that the user may interact with in the next step based on an ongoing session. Existing session-based recommender systems mainly aim to model the sequential signals based on Recurrent Neural Network (RNN) structures or the item transition relations between items with Graph Neural Network (GNN) based frameworks to identify a user’s intent for recommendation. However, in real scenarios, there may be strong sequential signals existing in users’ adjacent behaviors or multi-step transition relations among different items. Thus, either RNN- or GNN-based methods can only capture limited information for modeling complex user behavior patterns. RNNs pay attention to the sequential relations among consecutive items, while GNNs focus on structural information, i.e., how to enrich the item embedding with its adjacent items. In this paper, we propose a Collaborative Co-attention Network for Session-based Recommendation (CCN-SR) to incorporate both sequential and structural information, as well as capture the co-relations between them for obtaining an accurate session representation. To be specific, we first model the ongoing session with an RNN structure to capture the sequential information among items. Meanwhile, we also construct a session graph to learn the item representations with a GNN structure. Then, we design a co-attention network upon these two structures to capture the mutual information between them. The designed co-attention network can enrich the representation of each node in the session with both sequential and structural information, and thus generate a more comprehensive representation for each session. Extensive experiments are conducted on two public e-commerce datasets, and the results demonstrate that our proposed model outperforms state-of-the-art baseline model for session based recommendation in terms of both Recall and MRR. We also investigate different combination strategies and the experimental results verify the effectiveness of our proposed co-attention mechanism. Besides, our CCN-SR model achieves better performance than baseline models with different session lengths.

Suggested Citation

  • Wanyu Chen & Honghui Chen, 2021. "Collaborative Co-Attention Network for Session-Based Recommendation," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1392-:d:575405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1392/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1392-:d:575405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.