IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i2p234-d319641.html
   My bibliography  Save this article

Secret Image Sharing with Dealer-Participatory and Non-Dealer-Participatory Mutual Shadow Authentication Capabilities

Author

Listed:
  • Yue Jiang

    (National University of Defense Technology, Hefei 230037, China)

  • Xuehu Yan

    (National University of Defense Technology, Hefei 230037, China)

  • Jianqing Qi

    (National University of Defense Technology, Hefei 230037, China)

  • Yuliang Lu

    (National University of Defense Technology, Hefei 230037, China)

  • Xuan Zhou

    (National University of Defense Technology, Hefei 230037, China)

Abstract

A ( k , n ) threshold secret image sharing (SIS) method is proposed to divide a secret image into n shadows. The beauty of this scheme is that one can only reconstruct a secret image with k or more than k shadows, but one cannot obtain any information about the secret from fewer than k shadows. In the ( k , n ) threshold SIS, shadow authentication means the detection and location of manipulated shadows. Traditional shadow authentication schemes require additional bits for authentication; need much information to be public; or need to put each shadow into a host image, utilizing the information hiding technique, which makes the generation, recovery and authentication complexity higher. Besides, most existing schemes work when a dealer participates in recovery. Our contribution is that we propose a SIS method for a ( k , n ) threshold with dealer-participatory and non-dealer-participatory mutual shadow authentication capabilities which integrates polynomial-based SIS and visual secret sharing (VSS) through using the result of VSS to “guide” the polynomial-based SIS by a screening operation. In our scheme, when an authentication image is public, all involved actors (participants and dealer) can mutually authenticate each other by exchange the lowest level plane instead of the whole shadow. Our scheme is suitable for the case with and without a dealer participate recovery. In addition, the proposed scheme has characteristics of low generation and authentication complexity, no pixel expansion, 100% detection rate and lossless recovery.

Suggested Citation

  • Yue Jiang & Xuehu Yan & Jianqing Qi & Yuliang Lu & Xuan Zhou, 2020. "Secret Image Sharing with Dealer-Participatory and Non-Dealer-Participatory Mutual Shadow Authentication Capabilities," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:2:p:234-:d:319641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/2/234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/2/234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong Xie & Lixiang Li & Haipeng Peng & Yixian Yang, 2017. "A Secure and Efficient Scalable Secret Image Sharing Scheme with Flexible Shadow Sizes," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Wang & Peng Li & Zihan Ren, 2022. "Two-in-One Secret Image Sharing Scheme with Higher Visual Quality of the Previewed Image," Mathematics, MDPI, vol. 10(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Li & Liping Yin & Jianfeng Ma, 2020. "Visual Cryptography Scheme with Essential Participants," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    2. Qindong Sun & Han Cao & Shancang Li & Houbing Song & Yanxiao Liu, 2022. "Changing the Threshold in a Bivariate Polynomial Based Secret Image Sharing Scheme," Mathematics, MDPI, vol. 10(5), pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:2:p:234-:d:319641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.