IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i7p653-d250252.html
   My bibliography  Save this article

The Impact of Viscous Dissipation on the Thin Film Unsteady Flow of GO-EG/GO-W Nanofluids

Author

Listed:
  • Ali Rehman

    (School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia)

  • Zabidin Salleh

    (School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia)

  • Taza Gul

    (Department of Mathematics, City University of Science and Information Technology, Peshawar 25000, Pakistan)

  • Zafar Zaheer

    (Institute of Management Sciences, Peshawar 25000, Pakistan)

Abstract

The unsteady flow of nanoliquid film over a flexible surface has been inspected. Water and ethylene glycol are used as the base liquids for the graphene oxide platelets. The comparison of two sorts of nanoliquids has been used for heat transfer enhancement applications. The thickness of the nanoliquid film is kept as a variable. The governing equations for the flow problem have been altered into the set of nonlinear differential equations. The BVP 2.0 package has been used for the solution of the problem. The sum of the square residual error has been calculated up to the 10th order approximations. It has been observed that the graphene oxide ethylene glycol based nanofluid (GO-EG) is more efficient for heat transfer enhancement as compared to the graphene oxide water based nanofluid (GO-W). The impact of the physical parameters has been plotted and discussed.

Suggested Citation

  • Ali Rehman & Zabidin Salleh & Taza Gul & Zafar Zaheer, 2019. "The Impact of Viscous Dissipation on the Thin Film Unsteady Flow of GO-EG/GO-W Nanofluids," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:7:p:653-:d:250252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/7/653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/7/653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noor Saeed Khan & Taza Gul & Poom Kumam & Zahir Shah & Saeed Islam & Waris Khan & Samina Zuhra & Arif Sohail, 2019. "Influence of Inclined Magnetic Field on Carreau Nanoliquid Thin Film Flow and Heat Transfer with Graphene Nanoparticles," Energies, MDPI, vol. 12(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Li & Jun-Yi Sun & Zhi-Hang Zhao & Shou-Zhen Li & Xiao-Ting He, 2020. "A New Solution to Well-Known Hencky Problem: Improvement of In-Plane Equilibrium Equation," Mathematics, MDPI, vol. 8(5), pages 1-19, April.
    2. Kohilavani Naganthran & Roslinda Nazar & Zailan Siri & Ishak Hashim, 2021. "Entropy Analysis and Melting Heat Transfer in the Carreau Thin Hybrid Nanofluid Film Flow," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    3. Zahra Shah Hosseini & Awatef Abidi & Sajad Mohammadi & Seyed Abdollah Mansouri Mehryan & Christopher Hulme, 2021. "A Fully Resolved Computational Fluid Dynamics Study of the Boundary Layer Flow of an Aqueous Nanoliquid Comprising Gyrotactic Microorganisms over a Stretching Sheet: The Validity of Conventional Simil," Mathematics, MDPI, vol. 9(21), pages 1-18, October.
    4. Ali Rehman & Zabidin Salleh, 2021. "Influence of Marangoni Convection on Magnetohydrodynamic Viscous Dissipation and Heat Transfer on Hybrid Nanofluids in a Rotating System among Two Surfaces," Mathematics, MDPI, vol. 9(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Kremieniewski, 2020. "Influence of Graphene Oxide on Rheological Parameters of Cement Slurries," Energies, MDPI, vol. 13(20), pages 1-15, October.
    2. Kohilavani Naganthran & Ishak Hashim & Roslinda Nazar, 2020. "Triple Solutions of Carreau Thin Film Flow with Thermocapillarity and Injection on an Unsteady Stretching Sheet," Energies, MDPI, vol. 13(12), pages 1-17, June.
    3. Rustem Kashaev & Nguyen Duc Ahn & Valeriya Kozelkova & Oleg Kozelkov & Valentin Dudkin, 2023. "Online Multiphase Flow Measurement of Crude Oil Properties Using Nuclear (Proton) Magnetic Resonance Automated Measurement Complex for Energy Safety at Smart Oil Deposits," Energies, MDPI, vol. 16(3), pages 1-16, January.
    4. Yasir Nawaz & Muhammad Shoaib Arif & Wasfi Shatanawi & Amna Nazeer, 2021. "An Explicit Fourth-Order Compact Numerical Scheme for Heat Transfer of Boundary Layer Flow," Energies, MDPI, vol. 14(12), pages 1-17, June.
    5. Remus-Daniel Ene & Nicolina Pop & Rodica Badarau, 2023. "Heat and Mass Transfer Analysis for the Viscous Fluid Flow: Dual Approximate Solutions," Mathematics, MDPI, vol. 11(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:7:p:653-:d:250252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.