IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i1p89-d198180.html
   My bibliography  Save this article

Ball Comparison for Some Efficient Fourth Order Iterative Methods Under Weak Conditions

Author

Listed:
  • Ioannis K. Argyros

    (Department of Mathematics Sciences, Cameron University, Lawton, OK 73505, USA
    These authors contributed equally to this work.)

  • Ramandeep Behl

    (Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    These authors contributed equally to this work.)

Abstract

We provide a ball comparison between some 4-order methods to solve nonlinear equations involving Banach space valued operators. We only use hypotheses on the first derivative, as compared to the earlier works where they considered conditions reaching up to 5-order derivative, although these derivatives do not appear in the methods. Hence, we expand the applicability of them. Numerical experiments are used to compare the radii of convergence of these methods.

Suggested Citation

  • Ioannis K. Argyros & Ramandeep Behl, 2019. "Ball Comparison for Some Efficient Fourth Order Iterative Methods Under Weak Conditions," Mathematics, MDPI, vol. 7(1), pages 1-14, January.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:1:p:89-:d:198180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/1/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/1/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moin-ud-Din Junjua & Saima Akram & Nusrat Yasmin & Fiza Zafar, 2015. "A New Jarratt-Type Fourth-Order Method for Solving System of Nonlinear Equations and Applications," Journal of Applied Mathematics, Hindawi, vol. 2015, pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramandeep Behl & Alicia Cordero & Juan R. Torregrosa & Ali Saleh Alshomrani, 2018. "New Iterative Methods for Solving Nonlinear Problems with One and Several Unknowns," Mathematics, MDPI, vol. 6(12), pages 1-17, December.
    2. José J. Padilla & Francisco I. Chicharro & Alicia Cordero & Alejandro M. Hernández-Díaz & Juan R. Torregrosa, 2024. "A Class of Efficient Sixth-Order Iterative Methods for Solving the Nonlinear Shear Model of a Reinforced Concrete Beam," Mathematics, MDPI, vol. 12(3), pages 1-16, February.
    3. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros, 2019. "Local Convergence and Attraction Basins of Higher Order, Jarratt-Like Iterations," Mathematics, MDPI, vol. 7(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:1:p:89-:d:198180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.