IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i10p925-d273429.html
   My bibliography  Save this article

On Mann Viscosity Subgradient Extragradient Algorithms for Fixed Point Problems of Finitely Many Strict Pseudocontractions and Variational Inequalities

Author

Listed:
  • Lu-Chuan Ceng

    (Department of Mathematics, Shanghai Normal University, Shanghai 200234, China)

  • Adrian Petruşel

    (Department of Mathematics Babeş-Bolyai University, Cluj-Napoca 400084, Romania
    Academy of Romanian Scientists, Bucharest 050044, Romania)

  • Jen-Chih Yao

    (Research Center for Interneural Computing, China Medical University Hospital, Taichung 40447, Taiwan)

Abstract

In a real Hilbert space, we denote CFPP and VIP as common fixed point problem of finitely many strict pseudocontractions and a variational inequality problem for Lipschitzian, pseudomonotone operator, respectively. This paper is devoted to explore how to find a common solution of the CFPP and VIP. To this end, we propose Mann viscosity algorithms with line-search process by virtue of subgradient extragradient techniques. The designed algorithms fully assimilate Mann approximation approach, viscosity iteration algorithm and inertial subgradient extragradient technique with line-search process. Under suitable assumptions, it is proven that the sequences generated by the designed algorithms converge strongly to a common solution of the CFPP and VIP, which is the unique solution to a hierarchical variational inequality (HVI).

Suggested Citation

  • Lu-Chuan Ceng & Adrian Petruşel & Jen-Chih Yao, 2019. "On Mann Viscosity Subgradient Extragradient Algorithms for Fixed Point Problems of Finitely Many Strict Pseudocontractions and Variational Inequalities," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:925-:d:273429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/10/925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/10/925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. K. Xu & T. H. Kim, 2003. "Convergence of Hybrid Steepest-Descent Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 185-201, October.
    2. Rapeepan Kraikaew & Satit Saejung, 2014. "Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 399-412, November.
    3. Zhao-Rong Kong & Lu-Chuan Ceng & Ching-Feng Wen, 2012. "Some Modified Extragradient Methods for Solving Split Feasibility and Fixed Point Problems," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-32, December.
    4. Lu-Chuan Ceng & Qing Yuan, 2019. "Hybrid Mann Viscosity Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(2), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu-Chuan Ceng & Adrian Petruşel & Ching-Feng Wen & Jen-Chih Yao, 2019. "Inertial-Like Subgradient Extragradient Methods for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive and Strictly Pseudocontractive Mappings," Mathematics, MDPI, vol. 7(9), pages 1-19, September.
    2. Yun-Ling Cui & Lu-Chuan Ceng & Fang-Fei Zhang & Cong-Shan Wang & Jian-Ye Li & Hui-Ying Hu & Long He, 2022. "Modified Mann-Type Subgradient Extragradient Rules for Variational Inequalities and Common Fixed Points Implicating Countably Many Nonexpansive Operators," Mathematics, MDPI, vol. 10(11), pages 1-26, June.
    3. Lu-Chuan Ceng & Xiaoye Yang, 2019. "Some Mann-Type Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(3), pages 1-20, February.
    4. Lu-Chuan Ceng & Xiaolong Qin & Yekini Shehu & Jen-Chih Yao, 2019. "Mildly Inertial Subgradient Extragradient Method for Variational Inequalities Involving an Asymptotically Nonexpansive and Finitely Many Nonexpansive Mappings," Mathematics, MDPI, vol. 7(10), pages 1-19, September.
    5. Lu-Chuan Ceng & Yekini Shehu & Jen-Chih Yao, 2022. "Modified Mann Subgradient-like Extragradient Rules for Variational Inequalities and Common Fixed Points Involving Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(5), pages 1-20, February.
    6. Lu-Chuan Ceng & Ching-Feng Wen & Yeong-Cheng Liou & Jen-Chih Yao, 2022. "On Strengthened Inertial-Type Subgradient Extragradient Rule with Adaptive Step Sizes for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    7. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    8. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    9. Jinzuo Chen & Mihai Postolache & Li-Jun Zhu, 2019. "Iterative Algorithms for Split Common Fixed Point Problem Involved in Pseudo-Contractive Operators without Lipschitz Assumption," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    10. Lu-Chuan Ceng & Mihai Postolache & Ching-Feng Wen & Yonghong Yao, 2019. "Variational Inequalities Approaches to Minimization Problems with Constraints of Generalized Mixed Equilibria and Variational Inclusions," Mathematics, MDPI, vol. 7(3), pages 1-20, March.
    11. Lu-Chuan Ceng & Yun-Yi Huang & Si-Ying Li & Jen-Chih Yao, 2025. "Triple Mann Iteration Method for Variational Inclusions, Equilibria, and Common Fixed Points of Finitely Many Quasi-Nonexpansive Mappings on Hadamard Manifolds," Mathematics, MDPI, vol. 13(3), pages 1-16, January.
    12. Rapeepan Kraikaew & Satit Saejung, 2012. "On Maingé’s Approach for Hierarchical Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 71-87, July.
    13. Suthep Suantai & Suparat Kesornprom & Watcharaporn Cholamjiak & Prasit Cholamjiak, 2022. "Modified Projection Method with Inertial Technique and Hybrid Stepsize for the Split Feasibility Problem," Mathematics, MDPI, vol. 10(6), pages 1-12, March.
    14. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.
    15. Anchalee Sripattanet & Atid Kangtunyakarn, 2019. "Convergence Theorem of Two Sequences for Solving the Modified Generalized System of Variational Inequalities and Numerical Analysis," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
    16. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.
    17. Haiyun Zhou & Peiyuan Wang, 2014. "A Simpler Explicit Iterative Algorithm for a Class of Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 716-727, June.
    18. H.K. Xu, 2003. "An Iterative Approach to Quadratic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 659-678, March.
    19. Lu-Chuan Ceng & Qamrul Hasan Ansari & Jen-Chih Yao, 2011. "Iterative Methods for Triple Hierarchical Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 489-512, December.
    20. Jeong, Jae Ug, 2016. "Generalized viscosity approximation methods for mixed equilibrium problems and fixed point problems," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 168-180.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:925-:d:273429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.