IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v3y2015i3p563-603d51839.html
   My bibliography  Save this article

Singular Bilinear Integrals in Quantum Physics

Author

Listed:
  • Brian Jefferies

    (School of Mathematics, The University of New South Wales, Sydney, NSW 2052, Australia)

Abstract

Bilinear integrals of operator-valued functions with respect to spectral measures and integrals of scalar functions with respect to the product of two spectral measures arise in many problems in scattering theory and spectral analysis. Unfortunately, the theory of bilinear integration with respect to a vector measure originating from the work of Bartle cannot be applied due to the singular variational properties of spectral measures. In this work, it is shown how ``decoupled'' bilinear integration may be used to find solutions \(X\) of operator equations \(AX-XB=Y\) with respect to the spectral measure of \(A\) and to apply such representations to the spectral decomposition of block operator matrices. A new proof is given of Peller's characterisation of the space \(L^1((P\otimes Q)_{\mathcal L(\mathcal H)})\) of double operator integrable functions for spectral measures \(P\), \(Q\) acting in a Hilbert space \(\mathcal H\) and applied to the representation of the trace of \(\int_{\Lambda\times\Lambda}\varphi\,d(PTP)\) for a trace class operator \(T\). The method of double operator integrals due to Birman and Solomyak is used to obtain an elementary proof of the existence of Krein's spectral shift function.

Suggested Citation

  • Brian Jefferies, 2015. "Singular Bilinear Integrals in Quantum Physics," Mathematics, MDPI, vol. 3(3), pages 1-41, June.
  • Handle: RePEc:gam:jmathe:v:3:y:2015:i:3:p:563-603:d:51839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/3/3/563/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/3/3/563/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:3:y:2015:i:3:p:563-603:d:51839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.