IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1528-d1650201.html
   My bibliography  Save this article

United Prediction of Travel Modes and Purposes in Travel Chains Based on Multitask Learning Deep Neural Networks

Author

Listed:
  • Chenxi Xiao

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Zhitao Li

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Jinjun Tang

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Jeanyoung Jay Lee

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract

Predicting and analyzing travel mode choices and purposes are significant to improve urban travel mobility and transportation planning. Previous research has ignored the interconnection between travel mode choices and purposes and thus overlooked their potential contributions to predictions. Using individual travel chain data collected in South Korea, this study proposes a Multi-Task Learning Deep Neural Network (MTLDNN) framework, integrating RFM (Recency, Frequency, Monetary) to achieve a joint prediction of travel mode choices and purposes. The MTLDNN is constructed to share a common hidden layer that extracts general features from the input data, while task-specific output layers are dedicated to predicting travel modes and purposes separately. This structure allows for efficient learning of shared representations while maintaining the capacity to model task-specific relationships. RFM is then integrated to optimize the extraction of users’ behavioral features, which helps in better understanding the temporal and financial patterns of users’ travel activities. The results show that the MTLDNN demonstrates consistent input variable replacement modes and selection probabilities in generating behavioral replacement patterns. Compared to the multinomial logit model (MNL), the MTLDNN achieves lower cross-entropy loss and higher prediction accuracy. The proposed framework could enhance transportation planning, efficiency, and user satisfaction by enabling more accurate predictions.

Suggested Citation

  • Chenxi Xiao & Zhitao Li & Jinjun Tang & Jeanyoung Jay Lee, 2025. "United Prediction of Travel Modes and Purposes in Travel Chains Based on Multitask Learning Deep Neural Networks," Mathematics, MDPI, vol. 13(9), pages 1-21, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1528-:d:1650201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenneth Train, 1980. "A Structured Logit Model of Auto Ownership and Mode Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(2), pages 357-370.
    2. Patricia K. Lyon, 1984. "Time-Dependent Structural Equations Modeling: A Methodology for Analyzing the Dynamic Attitude-Behavior Relationship," Transportation Science, INFORMS, vol. 18(4), pages 395-414, November.
    3. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    4. Ye, Xin & Pendyala, Ram M. & Gottardi, Giovanni, 2007. "An exploration of the relationship between mode choice and complexity of trip chaining patterns," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 96-113, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shenhao & Wang, Qingyi & Zhao, Jinhua, 2020. "Multitask learning deep neural networks to combine revealed and stated preference data," Journal of choice modelling, Elsevier, vol. 37(C).
    2. Xuemei Fu & Zhicai Juan, 2017. "An integrated framework to jointly model decisions of activity time allocation and work-related travel," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(6), pages 689-705, August.
    3. Shenhao Wang & Qingyi Wang & Jinhua Zhao, 2019. "Multitask Learning Deep Neural Networks to Combine Revealed and Stated Preference Data," Papers 1901.00227, arXiv.org, revised Aug 2019.
    4. Steven Farber & Antonio Páez & Ruben Mercado & Matthew Roorda & Catherine Morency, 2011. "A time-use investigation of shopping participation in three Canadian cities: is there evidence of social exclusion?," Transportation, Springer, vol. 38(1), pages 17-44, January.
    5. Andrea Pellegrini & Stefano Scagnolari, 2021. "The relationship between length of stay and land transportation mode in the tourism sector: A discrete–continuous framework applied to Swiss data," Tourism Economics, , vol. 27(1), pages 243-259, February.
    6. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).
    7. Santos-Pérez, Rubén., 2015. "Estimación de la demanda de uso de autos particulares en la zona metropolitana del valle de México: un análisis Tobit," Panorama Económico, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(21), pages 85-120, segundo s.
    8. Don Fullerton & Li Gan & Miwa Hattori, 2015. "A model to evaluate vehicle emission incentive policies in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 79-108, January.
    9. Hakim Hammadou & Claire Papaix, 2015. "Policy packages for modal shift and CO2 reduction in Lille, France," Working Papers 1501, Chaire Economie du climat.
    10. Ruifen Sun & Min Li & Qunqi Wu, 2018. "Research on Commuting Travel Mode Choice of Car Owners Considering Return Trip Containing Activities," Sustainability, MDPI, vol. 10(10), pages 1-12, September.
    11. Sun, Zhiyuan & Wang, Duo & Wang, Jianyu & Han, Lu & Xing, Yuxuan & Lu, Huapu & Chen, Yanyan, 2024. "Influence factors on travel mode preference of working residents living far away from downtown area on workdays: A hybrid method integrating random parameter logit model and Apriori algorithm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    12. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    13. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    14. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    15. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
    16. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    17. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    18. Vytautas Dumbliauskas & Vytautas Grigonis, 2020. "An Empirical Activity Sequence Approach for Travel Behavior Analysis in Vilnius City," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    19. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    20. Ta, Na & Zhao, Ying & Chai, Yanwei, 2016. "Built environment, peak hours and route choice efficiency: An investigation of commuting efficiency using GPS data," Journal of Transport Geography, Elsevier, vol. 57(C), pages 161-170.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1528-:d:1650201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.