Author
Listed:
- Emmanuel Thalassinakis
(Applied Mathematics and Computers Laboratory (AMCL), Technical University of Crete, Akrotiri Campus, 73100 Chania, Greece)
Abstract
This study focuses on an in-depth investigation of the Riemann zeta function. For this purpose, infinite numbers and rotational infinite numbers, which have been introduced in previous studies published by the author, are used. These numbers are a powerful tool for solving problems involving infinity that are otherwise difficult to solve. Infinite numbers are a superset of complex numbers and can be either complex numbers or some quantification of infinity. The Riemann zeta function can be written as a sum of three rotational infinite numbers, each of which represents infinity. Using these infinite numbers and their properties, a correlation of the non-trivial zeros of the Riemann zeta function with each other is revealed and proven. In addition, an interesting relation between the Euler–Mascheroni constant (γ) and the non-trivial zeros of the Riemann zeta function is proven. Based on this analysis, complex series limits are calculated and important conclusions about the Riemann zeta function are drawn. It turns out that when we have non-trivial zeros of the Riemann zeta function, the corresponding Dirichlet series increases linearly, in contrast to the other cases where this series also includes a fluctuating term. The above theoretical results are fully verified using numerical computations. Furthermore, a new numerical method is presented for calculating the non-trivial zeros of the Riemann zeta function, which lie on the critical line. In summary, by using infinite numbers, aspects of the Riemann zeta function are explored and revealed from a different perspective; additionally, interesting mathematical relationships that are difficult or impossible to solve with other methods are easily analyzed and solved.
Suggested Citation
Emmanuel Thalassinakis, 2025.
"An In-Depth Investigation of the Riemann Zeta Function Using Infinite Numbers,"
Mathematics, MDPI, vol. 13(9), pages 1-20, April.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:9:p:1483-:d:1646738
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1483-:d:1646738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.