Author
Listed:
- Dong-Min Son
(School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea)
- Sung-Hak Lee
(School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea)
Abstract
When objects are obscured by shadows or dim surroundings, image quality is improved by fusing near-infrared and visible-light images. At night, when visible and NIR lights are insufficient, long-wave infrared (LWIR) imaging can be utilized, necessitating the attachment of a visible-light sensor to an LWIR camera to simultaneously capture both LWIR and visible-light images. This camera configuration enables the acquisition of infrared images at various wavelengths depending on the time of day. To effectively fuse clear visible regions from the visible-light spectrum with those from the LWIR spectrum, a multi-band fusion method is proposed. The proposed fusion process subsequently combines detailed information from infrared and visible-light images, enhancing object visibility. Additionally, this process compensates for color differences in visible-light images, resulting in a natural and visually consistent output. The fused images are further enhanced using a night-to-day image translation module, which improves overall brightness and reduces noise. This night-to-day translation module is a trained CycleGAN-based module that adjusts object brightness in nighttime images to levels comparable to daytime images. The effectiveness and superiority of the proposed method are validated using image quality metrics. The proposed method significantly contributes to image enhancement, achieving the best average scores compared to other methods, with a BRISQUE of 30.426 and a PIQE of 22.186. This study improves the accuracy of human and object recognition in CCTV systems and provides a potential image-processing tool for autonomous vehicles.
Suggested Citation
Dong-Min Son & Sung-Hak Lee, 2025.
"Low-Light Image Enhancement for Driving Condition Recognition Through Multi-Band Images Fusion and Translation,"
Mathematics, MDPI, vol. 13(9), pages 1-36, April.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:9:p:1418-:d:1642861
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1418-:d:1642861. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.