Author
Listed:
- Nurlan Temirbekov
(Faculty of Mechanics and Mathematics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
National Engineering Academy of the Republic of Kazakhstan, Almaty 0050010, Kazakhstan)
- Kerimakyn Ainur
(Faculty of Mechanics and Mathematics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)
Abstract
This article discusses the problem of numerically solving the Navier–Stokes equations, the heat conduction equation, and the transport equation in the orthogonal coordinates of a free curve. Since the numerical solution domain is complex, the curvilinear mesh method was used. To do so, first, a boundary value problem was posed for the elliptic equation to automate the creation of orthogonal curved meshes. By numerically solving this problem, the program code for the curvilinear mesh generator was created. The motion of a liquid or gas through a porous medium was described by numerically solving the Navier–Stokes equations in freely curvilinear orthogonal coordinates. The transformation of the Navier–Stokes equation system, written in the stream function, vorticity variables, and cylindrical coordinates, into arbitrary curvilinear coordinates, was considered in detail by introducing metric coefficients. To solve these equations, the coefficients of which vary rapidly, a three-layer differential scheme was developed. The approximation, stability, and compactness of the differential scheme were previously studied. The considered problem was considered to be the mathematical model of a car catalytic converter, and computational experiments were conducted. Calculations were performed with the developed program code in different geometries of the computational domain and different values of grid size. The Reynolds number was changed from 100 to 10,000, and its effect on the size of the backflow in front of the porous medium was discussed. The software code, which is based on the differential equation of the Navier–Stokes equations written in the orthogonal coordinates of a curved line, and its calculation algorithm can be used for the mathematical and computer modeling of automobile catalytic converters and chemical reactors.
Suggested Citation
Nurlan Temirbekov & Kerimakyn Ainur, 2025.
"Mathematical and Computational Modeling of Catalytic Converter Using Navier–Stokes Equations in Curvilinear Coordinates,"
Mathematics, MDPI, vol. 13(8), pages 1-20, April.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:8:p:1355-:d:1639156
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1355-:d:1639156. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.