Author
Listed:
- Mona Aldakheel
(Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia)
- Heba Kurdi
(Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia)
Abstract
The increasing complexity of cloud service composition demands innovative approaches that can efficiently optimize both functional requirements and quality of service (QoS) parameters. While several methods exist, they struggle to simultaneously minimize the number of combined clouds, examined services, and execution time while maintaining a high QoS. This novelty of this paper is the chemistry-based approach (CA) that draws inspiration from the periodic table’s organizational principles and electron shell theory to systematically reduce the complexity associated with service composition. As chemical elements are organized in the periodic table and electrons organize themselves in atomic shells based on energy levels, the proposed approach organizes cloud services in hierarchical structures based on their cloud number, composition frequencies, cloud quality, and QoS levels. By mapping chemical principles to cloud service attributes—where service quality levels correspond to electron shells and service combinations mirror molecular bonds—an efficient framework for service composition is created that simultaneously addresses multiple objectives in QoS, NC, NEC, NES, and execution time. The experimental results demonstrated significant improvements over existing methods, such as Genetic Algorithms (GAs), Simulated Annealing (SA), and Tabu Search (TS), across multiple performance metrics, i.e., reductions of 14–33% are observed in combined clouds, while reductions of 20–85% are observed in examined clouds, and reductions of 74–98% are observed in examined services. Also, a reduction of 10–99% is observed in execution time, while fitness levels are enhanced by 1–14% compared to benchmarks. These results validate the proposed approach’s effectiveness in optimizing service composition while minimizing computational overhead in multi-cloud environments.
Suggested Citation
Mona Aldakheel & Heba Kurdi, 2025.
"A Chemistry-Based Optimization Algorithm for Quality of Service-Aware Multi-Cloud Service Compositions,"
Mathematics, MDPI, vol. 13(8), pages 1-35, April.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:8:p:1351-:d:1639172
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1351-:d:1639172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.