Author
Listed:
- Fathimathul Rajeena P.P
(Computer Science Department, College of Computer Science and Information Technology, King Faisal University, Alhasa 31982, Saudi Arabia)
- Sara Tehsin
(Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania)
Abstract
Breast cancer is the most common disease in women, with 287,800 new cases and 43,200 deaths in 2022 across United States. Early mammographic picture analysis and processing reduce mortality and enable efficient treatment. Several deep-learning-based mammography classification methods have been developed. Due to low-contrast images and irrelevant information in publicly available breast cancer datasets, existing models generally perform poorly. Pre-trained convolutional neural network models trained on generic datasets tend to extract irrelevant features when applied to domain-specific classification tasks, highlighting the need for a feature selection mechanism to transform high-dimensional data into a more discriminative feature space. This work introduces an innovative and effective multi-step pathway to overcome these restrictions. In preprocessing, mammographic pictures are haze-reduced using adaptive transformation, normalized using a cropping algorithm, and balanced using rotation, flipping, and noise addition. A 32-layer convolutional neural model inspired by YOLO, U-Net, and ResNet is intended to extract highly discriminative features for breast cancer classification. A modified Grey Wolf Optimization algorithm with three significant adjustments improves feature selection and redundancy removal over the previous approach. The robustness and efficacy of the proposed model in the classification of breast cancer were validated by its consistently high performance across multiple benchmark mammogram datasets. The model’s constant and better performance proves its robust generalization, giving it a powerful solution for binary and multiclass breast cancer classification.
Suggested Citation
Fathimathul Rajeena P.P & Sara Tehsin, 2025.
"A Framework for Breast Cancer Classification with Deep Features and Modified Grey Wolf Optimization,"
Mathematics, MDPI, vol. 13(8), pages 1-30, April.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:8:p:1236-:d:1631111
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1236-:d:1631111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.