IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i6p905-d1607961.html
   My bibliography  Save this article

On the Monogenity of Quartic Number Fields Defined by x 4 + ax 2 + b

Author

Listed:
  • Lhoussain El Fadil

    (Faculty of Sciences Dhar El Mahraz, Sidi Mohamed ben Abdellah University, Atlas-Fes P.O. Box 1796, Morocco
    These authors contributed equally to this work.)

  • István Gaál

    (Institute of Mathematics, University of Debrecen, H-4032 Debrecen, Hungary
    These authors contributed equally to this work.)

Abstract

For any quartic number field K generated by a root α of an irreducible trinomial of type x 4 + a x 2 + b ∈ Z [ x ] , we characterize when Z [ α ] is integrally closed. Also for p = 2 , 3 , we explicitly give the highest power of p dividing i ( K ) , the common index divisor of K . For a wide class of monogenic trinomials of this type, we prove that up to equivalence, there is only one generator of power integral bases in K = Q ( α ) . We illustrate our statements with a series of examples.

Suggested Citation

  • Lhoussain El Fadil & István Gaál, 2025. "On the Monogenity of Quartic Number Fields Defined by x 4 + ax 2 + b," Mathematics, MDPI, vol. 13(6), pages 1-19, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:6:p:905-:d:1607961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/6/905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/6/905/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:6:p:905-:d:1607961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.