Author
Listed:
- Sana Munir Khan
(Future Convergence Engineering, School of Computer Science and Engineering, Korea University of Technology and Education, 1600 Chungjeolro, Byeongcheonmyeon, Cheonan 31253, Republic of Korea)
- Muhammad Tariq Mahmood
(Future Convergence Engineering, School of Computer Science and Engineering, Korea University of Technology and Education, 1600 Chungjeolro, Byeongcheonmyeon, Cheonan 31253, Republic of Korea)
Abstract
Defocus blur is often encountered in images taken with optical imaging equipment. It might be unwanted, but it might also be a deliberate artistic effect, which means it might help how we see the scenario in an image. In specific applications like image restoration or object detection, there may be a need to divide a partially blurred image into its blurred and sharp regions. The effectiveness of blur detection is influenced by how features are combined. In this paper, we propose a parameter-free metaheuristic optimization strategy known as teacher-learning-based optimization (TLBO) to find an optimal weight vector for the combination of blur maps. First, we compute multi-scale blur maps, i.e., features using an LBP-based blur metric. Then, we apply a regularization scheme to refine the initial blur maps. This results in a smooth, edge-preserving blur map that leverages structural information for improved segmentation. Lastly, TLBO is used to find the optimal weight vectors of each refined blur map for the linear feature combination. The proposed model is validated through extensive experiments on two benchmark datasets, and its performance is comparable against five state-of-the-art methods.
Suggested Citation
Sana Munir Khan & Muhammad Tariq Mahmood, 2025.
"A Teacher-Learning-Based Optimization Approach for Blur Detection in Defocused Images,"
Mathematics, MDPI, vol. 13(2), pages 1-16, January.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:2:p:187-:d:1562688
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:187-:d:1562688. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.