IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i20p3248-d1768393.html
   My bibliography  Save this article

Empirical Analysis of the Impact of Two Key Parameters of the Harmony Search Algorithm on Performance

Author

Listed:
  • Geonhee Lee

    (College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea)

  • Zong Woo Geem

    (College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea)

Abstract

Metaheuristic algorithms are widely utilized as effective tools for solving complex optimization problems. Among them, the Harmony Search (HS) algorithm has garnered significant attention for its simple structure and excellent performance. The efficacy of the HS algorithm is heavily dependent on the configuration of its internal parameters, with the Harmony Memory Considering Rate (HMCR) and Pitch Adjusting Rate (PAR) playing pivotal roles. These parameters determine the probabilities of using the Random Generation (RG), Harmony Memory Consideration (HMC), and Pitch Adjustment (PA) operators, thereby controlling the balance between exploration and exploitation. However, a systematic empirical analysis of the interaction between these parameters and the characteristics of the problem at hand remains insufficient. Thus, this study conducts a comprehensive empirical analysis of the performance sensitivity of the HS algorithm to variations in HMCR and PAR values. The analysis is performed on a suite of 23 benchmark functions, encompassing diverse characteristics such as unimodality/multimodality and separability/non-separability, along with 5 real-world optimization problems. Through extensive experimentation, the performance for each parameter combination was evaluated on a rank-based system and visualized using heatmaps. The results experimentally demonstrate that the algorithm’s performance is most sensitive to the HMCR value across all function types, establishing that setting a high HMCR value (≥0.9) is a prerequisite for securing stable performance. Conversely, the optimal PAR value showed a direct correlation with the topographical features of the problem landscape. For unimodal problems, a low PAR value between 0.1 and 0.3 was more effective, whereas for complex multimodal problems with numerous local optima, a relatively higher PAR value between 0.3 and 0.5 proved more efficient in searching for the global optimum. This research provides a guideline into the parameter settings of the HS algorithm and contributes to enhancing its practical applicability by proposing a systematic parameter tuning strategy based on problem characteristics.

Suggested Citation

  • Geonhee Lee & Zong Woo Geem, 2025. "Empirical Analysis of the Impact of Two Key Parameters of the Harmony Search Algorithm on Performance," Mathematics, MDPI, vol. 13(20), pages 1-31, October.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:20:p:3248-:d:1768393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/20/3248/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/20/3248/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:20:p:3248-:d:1768393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.