Author
Listed:
- Yefang Sun
(College of Modern Science and Technology, China Jiliang University, Jinhua 322000, China)
- Yvlei Chen
(College of Modern Science and Technology, China Jiliang University, Jinhua 322000, China)
- Yang Xu
(School of Economics and Management, China Jiliang University, Hangzhou 310018, China)
Abstract
The traditional Mahalanobis–Taguchi System (MTS) employs two main strategies for multi-class classification: the partial binary tree MTS (PBT-MTS) and the multi-tree MTS (MT-MTS). The PBT-MTS relies on a fixed binary tree structure, resulting in limited model flexibility, while the MT-MTS suffers from its dependence on pre-defined category partitioning. Both methods exhibit constraints in adaptability and classification efficiency within complex data environments. To overcome these limitations, this paper proposes an innovative Adaptive Tree-structured Mahalanobis–Taguchi System (ATMTS). Its core breakthrough lies in the ability to autonomously construct an optimal multi-layer classification tree structure. Unlike conventional PBT-MTS, which establishes a Mahalanobis Space (MS) containing only a single category per node, ATMTS dynamically generates the MS that incorporates multiple categories, substantially enhancing discriminative power and structural adaptability. Furthermore, compared to MT-MTS, which depends on prior label information, ATMTS operates without predefined categorical assumptions, uncovering discriminative relationships solely through data-driven learning. This enables broader applicability and stronger generalization capability. By introducing a unified multi-objective joint optimization model, our method simultaneously optimizes structure construction, feature selection, and threshold determination, effectively overcoming the drawbacks of conventional phased optimization approaches. Experimental results demonstrate that ATMTS outperforms PBT-MTS, MT-MTS, and other mainstream classification methods across multiple benchmark datasets, achieving significant improvements in the accuracy and robustness of multi-class classification tasks.
Suggested Citation
Yefang Sun & Yvlei Chen & Yang Xu, 2025.
"Adaptive Tree-Structured MTS with Multi-Class Mahalanobis Space for High-Performance Multi-Class Classification,"
Mathematics, MDPI, vol. 13(19), pages 1-26, October.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:19:p:3233-:d:1767293
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:19:p:3233-:d:1767293. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.