Author
Listed:
- Liping Yuan
(School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China)
- Ke Wang
(School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China)
- Fengkai Luan
(School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China)
Abstract
To address the computational efficiency challenges in two-dimensional (2D) direction-of-arrival (DOA) estimation, a two-stage framework integrating the Nyström approximation with subspace decomposition techniques is proposed in this paper. The methodology strategically integrates the Nyström approximation with subspace decomposition techniques to bridge the critical performance–complexity trade-off inherent in high-resolution parameter estimation scenarios. In the first stage, the Nyström method is applied to approximate the signal subspace while simultaneously enabling construction of a reduced rank covariance matrix, which effectively reduces the computational complexity compared with eigenvalue decomposition (EVD) or singular value decomposition (SVD). This innovative approach efficiently derives two distinct signal subspaces that closely approximate those obtained from the full-dimensional covariance matrix but at substantially reduced computational cost. The second stage employs a sophisticated subspace-based estimation technique that leverages the principal singular vectors associated with these approximated subspaces. This process incorporates an iterative refinement mechanism to accurately resolve the paired azimuth and elevation angles comprising the 2D DOA solution. With the use of the Nyström approximation and reduced rank framework, the entire DOA estimation process completely circumvents traditional EVD/SVD operations. This elimination constitutes the core mechanism enabling substantial computational savings without compromising estimation accuracy. Comprehensive numerical simulations rigorously demonstrate that the proposed framework maintains performance competitive with conventional high-complexity estimators while achieving significant complexity reduction. The evaluation benchmarks the method against multiple state-of-the-art DOA estimation techniques across diverse operational scenarios, confirming both its efficacy and robustness under varying signal conditions.
Suggested Citation
Liping Yuan & Ke Wang & Fengkai Luan, 2025.
"Nyström-Based 2D DOA Estimation for URA: Bridging Performance–Complexity Trade-Offs,"
Mathematics, MDPI, vol. 13(19), pages 1-13, October.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:19:p:3198-:d:1765593
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:19:p:3198-:d:1765593. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.