Author
Listed:
- Trevor J. Bihl
(School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA)
- William A. Young II
(College of Business, Ohio University, Athens, OH 45701, USA)
- Adam Moyer
(College of Business, Ohio University, Athens, OH 45701, USA)
Abstract
Accurate prediction of reinforced concrete shear strength is essential for structural safety, yet datasets often contain a mix of raw geometric and material properties alongside physics-informed engineered features, making optimal feature selection challenging. This study introduces a statistically principled framework that advances feature reduction for neural networks in three novel ways. First, it extends the artificial neural network-based signal-to-noise ratio (ANN-SNR) method, previously limited to classification, into regression tasks for the first time. Second, it couples ANN-SNR with a confidence-interval (CI)-based stopping rule, using the lower bound of the baseline ANN’s R 2 confidence interval as a rigorous statistical threshold for determining when feature elimination should cease. Third, it systematically evaluates both raw experimental variables and physics-informed engineered features, showing how their combination enhances both robustness and interpretability. Applied to experimental concrete shear strength data, the framework revealed that many low-SNR features in conventional formulations contribute little to predictive performance and can be safely removed. In contrast, hybrid models that combined key raw and engineered features consistently yielded the strongest performance. Overall, the proposed method reduced the input feature set by approximately 45% while maintaining results statistically indistinguishable from baseline and fully optimized models ( R 2 ≈ 0.85). These findings demonstrate that ANN-SNR with CI-based stopping provides a defensible and interpretable pathway for reducing model complexity in reinforced concrete shear strength prediction, offering practical benefits for design efficiency without compromising reliability.
Suggested Citation
Trevor J. Bihl & William A. Young II & Adam Moyer, 2025.
"Physics-Informed Feature Engineering and R 2 -Based Signal-to-Noise Ratio Feature Selection to Predict Concrete Shear Strength,"
Mathematics, MDPI, vol. 13(19), pages 1-18, October.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:19:p:3182-:d:1764855
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:19:p:3182-:d:1764855. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.