IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i19p3176-d1764499.html
   My bibliography  Save this article

Weather-Corrupted Image Enhancement with Removal-Raindrop Diffusion and Mutual Image Translation Modules

Author

Listed:
  • Young-Ho Go

    (School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea)

  • Sung-Hak Lee

    (School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea)

Abstract

Artificial intelligence-based image processing is critical for sensor fusion and image transformation in mobility systems. Advanced driver assistance functions such as forward monitoring and digital side mirrors are essential for driving safety. Degradation due to raindrops, fog, and high-dynamic range (HDR) imbalance caused by lighting changes impairs visibility and reduces object recognition and distance estimation accuracy. This paper proposes a diffusion framework to enhance visibility under multi-degradation conditions. The denoising diffusion probabilistic model (DDPM) offers more stable training and high-resolution restoration than the generative adversarial networks. The DDPM relies on large-scale paired datasets, which are difficult to obtain in raindrop scenarios. This framework applies the Palette diffusion model, comprising data augmentation and raindrop-removal modules. The data augmentation module generates raindrop image masks and learns inpainting-based raindrop synthesis. Synthetic masks simulate raindrop patterns and HDR imbalance scenarios. The raindrop-removal module reconfigures the Palette architecture for image-to-image translation, incorporating the augmented synthetic dataset for raindrop removal learning. Loss functions and normalization strategies improve restoration stability and removal performance. During inference, the framework operates with a single conditional input, and an efficient sampling strategy is introduced to significantly accelerate the process. In post-processing, tone adjustment and chroma compensation enhance visual consistency. The proposed method preserves fine structural details and outperforms existing approaches in visual quality, improving the robustness of vision systems under adverse conditions.

Suggested Citation

  • Young-Ho Go & Sung-Hak Lee, 2025. "Weather-Corrupted Image Enhancement with Removal-Raindrop Diffusion and Mutual Image Translation Modules," Mathematics, MDPI, vol. 13(19), pages 1-31, October.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:19:p:3176-:d:1764499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/19/3176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/19/3176/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:19:p:3176-:d:1764499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.