IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i19p3129-d1762048.html
   My bibliography  Save this article

An Experimental Study of Transfer Functions and Binarization Strategies in Binary Arithmetic Optimization Algorithms for the Set Covering Problem

Author

Listed:
  • Broderick Crawford

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Ricardo Soto

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Hugo Caballero

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Gino Astorga

    (Escuela de Negocios Internacionales, Universidad de Valparaíso, Alcalde Prieto Nieto 452, Viña del Mar 2572048, Chile)

  • Felipe Cisternas-Caneo

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Fabián Solís-Piñones

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Giovanni Giachetti

    (Facultad de Ingeniería, Universidad Andres Bello, Antonio Varas 880, Providencia, Santiago 7591538, Chile)

Abstract

Metaheuristics have proven to be effective in solving large-scale combinatorial problems by combining global exploration with local exploitation, all within a reasonably short time. The balance between these phases is crucial to avoid slow or premature convergence. We propose binary variants of the Arithmetic Optimization Algorithm for the set cover problem, integrating a two-step binarization scheme based on transfer functions with binarization rules and a greedy repair operator to ensure feasibility. We evaluate the proposed solution using forty-five instances from OR-Beasley and compare it with representative approaches, including genetic algorithms, path-relinking strategies, and Lagrangian-based heuristics. The quality of the solution is evaluated using relative percentage deviation and stability with the coefficient of variation. The results show competitive deviations and consistently low variation, confirming that our approach is a robust alternative with a solid balance between exploration and exploitation.

Suggested Citation

  • Broderick Crawford & Ricardo Soto & Hugo Caballero & Gino Astorga & Felipe Cisternas-Caneo & Fabián Solís-Piñones & Giovanni Giachetti, 2025. "An Experimental Study of Transfer Functions and Binarization Strategies in Binary Arithmetic Optimization Algorithms for the Set Covering Problem," Mathematics, MDPI, vol. 13(19), pages 1-27, September.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:19:p:3129-:d:1762048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/19/3129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/19/3129/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:19:p:3129-:d:1762048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.