Author
Listed:
- Lu Zhang
(College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, China)
- Mulati Tuerde
(College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, China)
Abstract
This paper develops a nonlinear quantile structural equation model via the Bayesian approach, aiming to more accurately analyze the relationships between latent variables, with special attention paid to the issue of non-ignorable missing data in the model. The model not only incorporates quantile regression to examine the relationships between latent variables at different quantile levels but also features a specially designed mechanism for handling missing data. The non-ignorable missing mechanism is specified through a logistic regression model, and a combined method of Gibbs sampling and Metropolis–Hastings sampling is adopted for missing value imputation, while simultaneously estimating unknown parameters, latent variables, and parameters in the missing data model. To verify the effectiveness of the proposed method, simulation studies are conducted under conditions of different sample sizes and missing rates. The results of these simulation studies indicate that the developed method performs excellently in handling complex data structures and missing data. Furthermore, this paper demonstrates the practical application value of the nonlinear quantile structural equation model through a case study on the growth of listed companies, providing researchers in related fields with a new analytical tool.
Suggested Citation
Lu Zhang & Mulati Tuerde, 2025.
"Bayesian Analysis of Nonlinear Quantile Structural Equation Model with Possible Non-Ignorable Missingness,"
Mathematics, MDPI, vol. 13(19), pages 1-31, September.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:19:p:3094-:d:1758826
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:19:p:3094-:d:1758826. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.