Survival Analysis as Imprecise Classification with Trainable Kernels
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Håvard Kvamme & Ørnulf Borgan, 2021. "Continuous and discrete-time survival prediction with neural networks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 710-736, October.
- Álvaro Arroyo & Álvaro Cartea & Fernando Moreno-Pino & Stefan Zohren, 2024. "Deep attentive survival analysis in limit order books: estimating fill probabilities with convolutional-transformers," Quantitative Finance, Taylor & Francis Journals, vol. 24(1), pages 35-57, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wenbin Hu & Junzi Zhou, 2025. "Building Technical Analysis Strategies Using Multivariate Longitudinal and Time-to-Event Data in Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 66(3), pages 1911-1942, September.
- Jiwon Jung & Kiseop Lee, 2024. "Attention-Based Reading, Highlighting, and Forecasting of the Limit Order Book," Papers 2409.02277, arXiv.org, revised Nov 2024.
- Luca Lalor & Anatoliy Swishchuk, 2024. "Market Simulation under Adverse Selection," Papers 2409.12721, arXiv.org, revised Mar 2025.
- Yanlong Wang & Jian Xu & Shao-Lun Huang & Danny Dongning Sun & Xiao-Ping Zhang, 2025. "Assessing Uncertainty in Stock Returns: A Gaussian Mixture Distribution-Based Method," Papers 2503.06929, arXiv.org.
- Wenbin Hu & Junzi Zhou, 2024. "Trading Signal Survival Analysis: A Framework for Enhancing Technical Analysis Strategies in Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3473-3507, December.
- Weiguan Wang & Jia Xu, 2024. "Deep Learning Option Price Movement," Risks, MDPI, vol. 12(6), pages 1-17, June.
- Jiahao Yang & Ran Fang & Ming Zhang & Jun Zhou, 2025. "An Efficient deep learning model to Predict Stock Price Movement Based on Limit Order Book," Papers 2505.22678, arXiv.org.
- Ana Ezquerro & Brais Cancela & Ana López-Cheda, 2023. "On the Reliability of Machine Learning Models for Survival Analysis When Cure Is a Possibility," Mathematics, MDPI, vol. 11(19), pages 1-21, October.
- Iulii Vasilev & Mikhail Petrovskiy & Igor Mashechkin, 2023. "Sensitivity of Survival Analysis Metrics," Mathematics, MDPI, vol. 11(20), pages 1-34, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:18:p:3040-:d:1754314. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i18p3040-d1754314.html