Author
Listed:
- Otabek Sattarov
(School of Computing, Gachon University, Seongnam 13120, Republic of Korea)
- Fazliddin Makhmudov
(Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea)
Abstract
Forecasting Bitcoin prices remains a complex task due to the asset’s inherent and significant volatility. Traditional reinforcement learning (RL) models often rely on a single observation from the time series, potentially missing out on short-term patterns that could enhance prediction performance. This study presents a Deep Q-Network (DQN) model that utilizes a multi-step state representation, incorporating consecutive historical timesteps to reflect recent market behavior more accurately. By doing so, the model can more effectively identify short-term trends under volatile conditions. Additionally, we propose a novel reward mechanism that adjusts for volatility by penalizing large prediction errors more heavily during periods of high market volatility, thereby encouraging more risk-aware forecasting behavior. We validate the effectiveness of our approach through extensive experiments on Bitcoin data across minutely, hourly, and daily timeframes. The proposed model achieves notable results, including a Mean Absolute Percentage Error (MAPE) of 10.12%, Root Mean Squared Error (RMSE) of 815.33, and Value-at-Risk (VaR) of 0.04. These outcomes demonstrate the advantages of integrating short-term temporal features and volatility sensitivity into RL frameworks for more reliable cryptocurrency price prediction.
Suggested Citation
Otabek Sattarov & Fazliddin Makhmudov, 2025.
"Risk-Aware Crypto Price Prediction Using DQN with Volatility-Adjusted Rewards Across Multi-Period State Representations,"
Mathematics, MDPI, vol. 13(18), pages 1-29, September.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:18:p:3012-:d:1752016
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:18:p:3012-:d:1752016. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.