Author
Abstract
This study introduces SOMTreeNet, a novel hybrid neural model that integrates Self-Organizing Maps (SOMs) with BIRCH-inspired clustering features to address structured learning in a scalable and interpretable manner. Unlike conventional deep learning models, SOMTreeNet is designed with a recursive and modular topology that supports both supervised and unsupervised learning, enabling tasks such as classification, regression, clustering, anomaly detection, and time-series analysis. Extensive experiments were conducted using various publicly available datasets across five analytical domains: classification, regression, clustering, time-series forecasting, and image classification. These datasets cover heterogeneous structures including tabular, temporal, and visual data, allowing for a robust evaluation of the model’s generalizability. Experimental results demonstrate that SOMTreeNet consistently achieves competitive or superior performance compared to traditional machine learning and deep learning methods while maintaining a high degree of interpretability and adaptability. Its biologically inspired hierarchical structure facilitates transparent decision-making and dynamic model growth, making it particularly suitable for real-world applications that demand both accuracy and explainability. Overall, SOMTreeNet offers a versatile framework for learning from complex data while preserving the transparency and modularity often lacking in black-box models.
Suggested Citation
Yunus Doğan, 2025.
"SOMTreeNet: A Hybrid Topological Neural Model Combining Self-Organizing Maps and BIRCH for Structured Learning,"
Mathematics, MDPI, vol. 13(18), pages 1-37, September.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:18:p:2958-:d:1748355
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:18:p:2958-:d:1748355. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.