Author
Listed:
- Won-Kwang Park
(Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 02707, Republic of Korea)
Abstract
In this study, we investigate the application of the direct sampling method (DSM) to identify small dielectric objects in a limited-aperture inverse scattering problem. Unlike previous studies, we consider the bistatic measurement configuration corresponding to the transmitter location and design indicator functions for both a single source and multiple sources, and we convert the unknown measurement data to a fixed nonzero constant. To explain the applicability and limitation of object detection, we demonstrate that the indicator functions can be expressed by an infinite series of Bessel functions, the material properties of the objects, the bistatic angle, and the converted constant. Based on the theoretical results, we explain how the imaging performance of the DSM is influenced by the bistatic angle and the converted constant. In addition, the results of our analyses demonstrate that a smaller bistatic angle enhances the imaging accuracy and that optimal selection of the converted constant is crucial to realize reliable object detection. The results of the numerical simulations obtained using a two-dimensional Fresnel dataset validate the theoretical findings and illustrate the effectiveness and limitations of the designed indicator functions for small objects.
Suggested Citation
Won-Kwang Park, 2025.
"Direct Sampling Method to Retrieve Small Objects from Two-Dimensional Limited-Aperture Scattered Field Data,"
Mathematics, MDPI, vol. 13(18), pages 1-21, September.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:18:p:2923-:d:1745938
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:18:p:2923-:d:1745938. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.