Author
Listed:
- Weipeng Shi
(Aulin College, Northeast Forestry University, Harbin 150040, China)
- Junlin Dai
(Aulin College, Northeast Forestry University, Harbin 150040, China)
- Changhe Li
(Aulin College, Northeast Forestry University, Harbin 150040, China)
- Na Niu
(College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China)
Abstract
To address the issues of inaccurate positioning, weak feature extraction capability, and poor cross-domain adaptability in the detection of surface defects of steel materials, this paper proposes an improved YOLOv11-EMD algorithm and integrates a multi-stage transfer learning framework to achieve high-precision, robust, and low-cost industrial defect detection. Specifically, the InnerEIoU loss function is introduced to improve the accuracy of bounding box regression, the multi-scale dilated attention (MSDA) module is integrated to enhance the multi-scale feature fusion capability, and the Cross-Stage Partial Network with 3 Convolutions and Kernel size 2 Dynamic Convolution (C3k2_DynamicConv) module is embedded to improve the expression of and adaptability to complex defects. To address the problem of performance degradation when the model migrates between different data domains, a multi-stage transfer learning framework is constructed, combining source domain pre-training and target domain fine-tuning strategies to improve the model’s generalization ability in scenarios with changing data distributions. On the comprehensive dataset constructed of NEU-DET and Severstal steel defect images, YOLOv11-EMD achieved a precision of 0.942, a recall of 0.868, and an mAP@50 of 0.949, which are 3.5%, 0.8%, and 1.6% higher than the original model, respectively. On the cross-scenario mixed dataset composed of NEU-DET and GC10-DET data, the mAP@50 was 0.799, outperforming mainstream detection algorithms. The multi-stage transfer strategy can shorten the training time by 3.2% and increase the mAP by 8.8% while maintaining accuracy. The proposed method improves the defect detection accuracy, has good generalization and engineering application potential, and is suitable for automated quality inspection tasks in diverse industrial scenarios.
Suggested Citation
Weipeng Shi & Junlin Dai & Changhe Li & Na Niu, 2025.
"YOLOv11-EMD: An Enhanced Object Detection Algorithm Assisted by Multi-Stage Transfer Learning for Industrial Steel Surface Defect Detection,"
Mathematics, MDPI, vol. 13(17), pages 1-42, August.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:17:p:2769-:d:1736205
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2769-:d:1736205. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.