Author
Listed:
- Bhargavi Krishnamurthy
(Department of Computer Science and Engineering, Siddaganga Institute of Technology, Tumakuru 572103, India)
- Sajjan G. Shiva
(Department of Computer Science, University of Memphis, Memphis, TN 38107, USA)
Abstract
The global market for fog computing is expected to reach USD 6385 million by 2032. Modern enterprises rely on fog computing since it offers computational resources at edge devices through decentralized computation mechanisms. One of the crucial components of fog computing is the proper placement of applications on fog nodes (edge devices, Internet of Things (IoT)) for servicing. Large-scale, geographically distributed fog networks and heterogeneity of fog nodes make application placement a challenging task. Quantile Temporal Difference Learning (QTDL) is a promising distributed form of a reinforcement learning algorithm. It is superior compared to traditional reinforcement learning as it learns the act of prediction based on the full distribution of returns. QTDL is enriched by a small language model (SLM), which results in low inference latency, reduced costs of operation, and also enhanced rates of learning. The SLM, being a lightweight model, has policy-shaping capability, which makes it an ideal choice for the resource-constrained environment of edge devices. The data-driven quantiles of temporal difference learning are blended with the informed heuristics of the SLM to prevent quantile loss and over- or underestimation of the policies. In this paper, a novel SLM-guided QTDL framework is proposed to perform task scheduling among fog nodes. The proposed framework is implemented using the iFogSim simulator by considering both certain and uncertain fog computing environments. Further, the results obtained are validated using expected value analysis. The performance of the proposed framework is found to be satisfactory with respect of the following performance metrics: energy consumption, makespan time violations, budget violations, and load imbalance ratio.
Suggested Citation
Bhargavi Krishnamurthy & Sajjan G. Shiva, 2025.
"Small Language Model-Guided Quantile Temporal Difference Learning for Improved IoT Application Placement in Fog Computing,"
Mathematics, MDPI, vol. 13(17), pages 1-20, August.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:17:p:2768-:d:1736185
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2768-:d:1736185. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.