Author
Listed:
- Seung-Hwan Seo
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Seong-Gyun Choi
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Ji-Hee Yu
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Yoon-Ju Choi
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Ki-Chang Tong
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Min-Hyeok Choi
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Yeong-Gyun Jung
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Hyoung-Kyu Song
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Young-Hwan You
(Department of Computer Engineering, Sejong University, Seoul 05006, Republic of Korea)
Abstract
The optimization of beamforming in multi-base station (multi-BS) reconfigurable intelligent surface (RIS)-aided systems is a challenging task due to its high computational complexity. This paper first demonstrates that an optimized multi-BS system exhibits superior communication performance compared to a centralized large-scale single-BS system. To efficiently solve the complex beamforming problem in the multi-BS environment, this paper proposes a novel optimization solver based on a graph neural network (GNN) that models the physical structure of the system. Experimental results show that the proposed GNN solver finds solutions of higher quality, achieving a 42% performance increase with 45% less total computational complexity compared to a conventional iterative optimization method. Furthermore, when compared to other complex AI models such as transformer and Bi-LSTM, the proposed GNN achieves similar state-of-the-art performance while having less than 1% of the parameters and a fraction of the computational cost. These findings demonstrate that the GNN is a powerful, efficient, and practical solution for beamforming optimization in multi-BS RIS-aided systems, satisfying the demands for performance, computational efficiency, and model compactness.
Suggested Citation
Seung-Hwan Seo & Seong-Gyun Choi & Ji-Hee Yu & Yoon-Ju Choi & Ki-Chang Tong & Min-Hyeok Choi & Yeong-Gyun Jung & Hyoung-Kyu Song & Young-Hwan You, 2025.
"Graph Neural Network-Based Beamforming Optimization for Multi-BS RIS-Aided Communication Systems,"
Mathematics, MDPI, vol. 13(17), pages 1-17, August.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:17:p:2732-:d:1732360
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2732-:d:1732360. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.