Author
Listed:
- Mohammed Alwakeel
(Computer Engineering Department, Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia
Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia)
Abstract
Optical wireless sensor networks (OWSNs) offer promising capabilities for high-speed, energy-efficient communication, particularly in mission-critical environments such as industrial automation, healthcare monitoring, and smart buildings. However, dynamic spectrum management and fault tolerance remain key challenges in ensuring reliable and timely data transmission. This paper proposes an adaptive spectrum management framework (ASMF) that addresses these challenges through a mathematically grounded and implementation-driven approach. The ASMF formulates the spectrum allocation problem as a constrained Markov decision process and leverages a dual-layer optimization strategy combining Lyapunov drift-plus-penalty for queue stability with deep reinforcement learning for adaptive long-term decision making. Additionally, ASMF integrates a hybrid fault-tolerant mechanism using LSTM-based link failure prediction and lightweight recovery logic, achieving up to 83% prediction accuracy. Experimental evaluations using real-world datasets from industrial, healthcare, and smart infrastructure scenarios demonstrate that ASMF reduces critical traffic latency by 37%, improves reliability by 42% under fault conditions, and enhances energy efficiency by 22.6% compared with state-of-the-art methods. The system also maintains a 99.94% packet delivery ratio for critical traffic and achieves 69.7% faster recovery after link failures. These results confirm the effectiveness of ASMF as a robust and scalable solution for adaptive spectrum management in dynamic, fault-prone OWSN environments.
Suggested Citation
Mohammed Alwakeel, 2025.
"Adaptive Spectrum Management in Optical WSNs for Real-Time Data Transmission and Fault Tolerance,"
Mathematics, MDPI, vol. 13(17), pages 1-38, August.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:17:p:2715-:d:1731019
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2715-:d:1731019. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.