IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i16p2648-d1726779.html
   My bibliography  Save this article

Numerical Optimization of Neuro-Fuzzy Models Using Evolutionary Algorithms for Electricity Demand Forecasting in Pre-Tertiary Institutions

Author

Listed:
  • Stephen O. Oladipo

    (Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0183, South Africa)

  • Udochukwu B. Akuru

    (Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0183, South Africa)

  • Ogbonnaya I. Okoro

    (Department of Electrical/Electronic Engineering, Michael Okpara University of Agriculture, Umudike 440101, Nigeria)

Abstract

Reliable electricity supply in educational facilities demands predictive frameworks that reflect usage patterns and consumption variability. This study investigates electricity-consumption forecasting in lower-to-middle-income pre-tertiary institutions in Western Cape, South Africa, using adaptive neuro-fuzzy inference systems (ANFISs) optimized by evolutionary algorithms. Using genetic algorithm (GA) and particle swarm optimization (PSO) algorithms, the impact of two clustering techniques, Subtractive Clustering (SC) and Fuzzy C-Means (FCM), along with their cogent hyperparameters, were investigated, yielding several sub-models. The efficacy of the proposed models was evaluated using five standard statistical metrics, while the optimal model was also compared with other variants and hybrid models. Results obtained showed that the GA-ANFIS-FCM with four clusters achieved the best performance, recording the lowest Root Mean Square Error (RMSE) of 3.83, Mean Absolute Error (MAE) of 2.40, Theil’s U of 0.87, and Standard Deviation (SD) of 3.82. The developed model contributes valuable insights towards informed energy decisions.

Suggested Citation

  • Stephen O. Oladipo & Udochukwu B. Akuru & Ogbonnaya I. Okoro, 2025. "Numerical Optimization of Neuro-Fuzzy Models Using Evolutionary Algorithms for Electricity Demand Forecasting in Pre-Tertiary Institutions," Mathematics, MDPI, vol. 13(16), pages 1-33, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2648-:d:1726779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/16/2648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/16/2648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minelli, Federico & Ciriello, Ilaria & Minichiello, Francesco & D'Agostino, Diana, 2024. "From Net Zero Energy Buildings to an energy sharing model - The role of NZEBs in Renewable Energy Communities," Renewable Energy, Elsevier, vol. 223(C).
    2. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    3. Monowar Hossain & Saad Mekhilef & Firdaus Afifi & Laith M Halabi & Lanre Olatomiwa & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2018. "Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-31, April.
    4. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
    5. Jianwei Mi & Libin Fan & Xuechao Duan & Yuanying Qiu, 2018. "Short-Term Power Load Forecasting Method Based on Improved Exponential Smoothing Grey Model," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, March.
    6. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Tryggvi Jónsson & Pierre Pinson & Henrik Aa. Nielsen & Henrik Madsen, 2014. "Exponential Smoothing Approaches for Prediction in Real-Time Electricity Markets," Energies, MDPI, vol. 7(6), pages 1-23, June.
    8. Ye, Yuxiang & Koch, Steven F., 2021. "Measuring energy poverty in South Africa based on household required energy consumption," Energy Economics, Elsevier, vol. 103(C).
    9. Hao Yang & Maoyu Ran & Chaoqun Zhuang, 2022. "Prediction of Building Electricity Consumption Based on Joinpoint−Multiple Linear Regression," Energies, MDPI, vol. 15(22), pages 1-19, November.
    10. Petković, Dalibor & Ćojbašić, Žarko & Nikolić, Vlastimir & Shamshirband, Shahaboddin & Mat Kiah, Miss Laiha & Anuar, Nor Badrul & Abdul Wahab, Ainuddin Wahid, 2014. "Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission," Energy, Elsevier, vol. 64(C), pages 868-874.
    11. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    2. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    3. Panagiotis Michailidis & Iakovos Michailidis & Elias Kosmatopoulos, 2025. "Reinforcement Learning for Electric Vehicle Charging Management: Theory and Applications," Energies, MDPI, vol. 18(19), pages 1-50, October.
    4. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    5. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    6. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    7. Dato, Prudence & Hekponhoue, Sylvain & Lawson, Laté & Mukhaya, Brian & Okyere, Michael Adu, 2025. "Implications of alleviating unreliable electricity supply for energy poverty: Evidence from households in Benin," Energy Economics, Elsevier, vol. 146(C).
    8. Venkataramana Veeramsetty & Arjun Mohnot & Gaurav Singal & Surender Reddy Salkuti, 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models," Energies, MDPI, vol. 14(11), pages 1-21, May.
    9. Ma, Cong & Cheok, Mui Yee, 2022. "The impact of financing role and organizational culture in small and medium enterprises: Developing business strategies for economic recovery," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 26-38.
    10. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    11. Puig, Julian & Gasparini, Leonardo & Puig, Jorge, 2025. "Measuring energy poverty in Argentina: The relevance of regional disparities and policies," Utilities Policy, Elsevier, vol. 97(C).
    12. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    14. Nweye, Kingsley & Nagy, Zoltan, 2022. "MARTINI: Smart meter driven estimation of HVAC schedules and energy savings based on Wi-Fi sensing and clustering," Applied Energy, Elsevier, vol. 316(C).
    15. Tamara Schröter & André Richter & Jens Götze & André Naumann & Jenny Gronau & Martin Wolter, 2020. "Substation Related Forecasts of Electrical Energy Storage Systems: Transmission System Operator Requirements," Energies, MDPI, vol. 13(23), pages 1-26, November.
    16. Wei, Xiahai & Zeng, Chenyu & Wang, Jiannan & Chen, Yu, 2024. "The road to green development for national-level poverty-stricken counties: Does poverty alleviation help reduce carbon emissions?," Energy Economics, Elsevier, vol. 138(C).
    17. Deb, C. & Gelder, L.V. & Spiekman, M. & Pandraud, Guillaume & Jack, R. & Fitton, R., 2021. "Measuring the heat transfer coefficient (HTC) in buildings: A stakeholder's survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    19. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    20. Lei Dai & Haiying Wang, 2024. "An Improved WOA (Whale Optimization Algorithm)-Based CNN-BIGRU-CBAM Model and Its Application to Short-Term Power Load Forecasting," Energies, MDPI, vol. 17(11), pages 1-24, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2648-:d:1726779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.