Author
Listed:
- Adrian Ioan Botean
(Mechanical Engineering Department, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, 28 Memorandumului, 400114 Cluj-Napoca, Romania)
Abstract
This study demonstrates the effectiveness of the differential transform method (DTM) in solving complex solid mechanics problems, focusing on static analysis of beams under various loads and boundary conditions. For cantilever beams (BSM1), DTM provided exact polynomial solutions for deflections and slopes: a cubic solution for concentrated end loads, a quadratic distribution for applied moments, and a fourth-degree polynomial for uniformly distributed loads, all matching established theoretical results. For simply supported beams (BSM2), DTM yielded solutions across two intervals for midspan concentrated forces, though required corrective terms for applied moments due to discontinuities. Under uniform loading, the method produced precise polynomial solutions with maximum deflection at midspan. Key advantages include DTM’s high-precision analytical solutions without additional approximations and its adaptability to diverse loading scenarios. However, for cases with pronounced discontinuities like concentrated moments, supplementary methods (e.g., Green’s functions) may be needed. The study highlights DTM’s potential for extension to nonlinear or dynamic problems, while software integration could broaden its engineering applications. This study demonstrates, for the first time, how DTM yields exact polynomial solutions for Euler–Bernoulli beams under discontinuous loads (e.g., concentrated moments), overcoming limitations of traditional numerical methods. The method’s analytical precision and avoidance of discretization errors are highlighted. Traditional methods like FEM require mesh refinement near discontinuities (e.g., concentrated moments), leading to computational inefficiencies. DTM overcomes this by providing exact polynomial solutions with corrective terms, achieving errors below 0.5% with only 4–5 series terms.
Suggested Citation
Adrian Ioan Botean, 2025.
"Application of the DTM to the Elastic Curve Equation in Euler–Bernoulli Beam Theory,"
Mathematics, MDPI, vol. 13(16), pages 1-22, August.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:16:p:2647-:d:1726549
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2647-:d:1726549. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.