IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2522-d1718312.html
   My bibliography  Save this article

A Swarm-Based Multi-Objective Framework for Lightweight and Real-Time IoT Intrusion Detection

Author

Listed:
  • Hessah A. Alsalamah

    (Deapatment of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
    These authors contributed equally to this work.)

  • Walaa N. Ismail

    (Department of Management Information Systems, College of Business Administration, Al Yamamah University, Riyadh 11512, Saudi Arabia
    Faculty of Computers and Information, Minia University, Minia 61519, Egypt
    These authors contributed equally to this work.)

Abstract

Internet of Things (IoT) applications and services have transformed the way people interact with their environment, enhancing comfort and quality of life. Additionally, Machine Learning (ML) approaches show significant promise for detecting intrusions in IoT environments. However, the high dimensionality, class imbalance, and complexity of network traffic—combined with the dynamic nature of sensor networks—pose substantial challenges to the development of efficient and effective detection algorithms. In this study, a multi-objective metaheuristic optimization approach, referred to as MOOIDS-IoT, is integrated with ML techniques to develop an intelligent cybersecurity system for IoT environments. MOOIDS-IoT combines a Genetic Algorithm (GA)-based feature selection technique with a multi-objective Particle Swarm Optimization (PSO) algorithm. PSO optimizes convergence speed, model complexity, and classification accuracy by dynamically adjusting the weights and thresholds of the deployed classifiers. Furthermore, PSO integrates Pareto-based multi-objective optimization directly into the particle swarm framework, extending conventional swarm intelligence while preserving a diverse set of non-dominated solutions. In addition, the GA reduces training time and eliminates redundancy by identifying the most significant input characteristics. The MOOIDS-IoT framework is evaluated using two lightweight models—MOO-PSO-XGBoost and MOO-PSO-RF—across two benchmark datasets, namely the NSL-KDD and CICIoT2023 datasets. On CICIoT2023, MOO-PSO-RF obtains 91.42% accuracy, whereas MOO-PSO-XGBoost obtains 98.38% accuracy. In addition, both models perform well on NSL-KDD (MOO-PSO-RF: 99.66% accuracy, MOO-PSO-XGBoost: 98.46% accuracy). The proposed approach is particularly appropriate for IoT applications with limited resources, where scalability and model efficiency are crucial considerations.

Suggested Citation

  • Hessah A. Alsalamah & Walaa N. Ismail, 2025. "A Swarm-Based Multi-Objective Framework for Lightweight and Real-Time IoT Intrusion Detection," Mathematics, MDPI, vol. 13(15), pages 1-32, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2522-:d:1718312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2522/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2522-:d:1718312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.