Author
Listed:
- Yanyan Wen
(School of Management, Xi’an Jiaotong University, Xi’an 710049, China
Business School, Qinghai Institute of Technology, Xining 810016, China)
- Haifeng Li
(School of Mathematics and Statistics, Fuyang Normal University, Fuyang 236037, China)
Abstract
With the advent of the big data era, multi-view clustering (MVC) methods have attracted considerable acclaim due to their capability in handling the multifaceted nature of data, which achieves impressive results across various fields. However, two significant challenges persist in MVC methods: (1) They resort to learning view-invariant information of samples to bridge the heterogeneity gap between views, which may result in the loss of view-specific information that contributes to pattern mining. (2) They utilize fusion strategies that are susceptible to the discriminability of views, i.e., the concatenation and the weighing fusion of cross-view representations, to aggregate complementary and consistent information, which is difficult to guarantee semantic robustness of fusion representations. To this end, a simple yet effective cluster complementarity and consistency learning framework (CommonMVC) is proposed for mining patterns of multiview data. Specifically, a cluster complementarity learning is devised to endow fusion representations with discriminate information via nonlinearly aggregating view-specific information. Meanwhile, a cluster consistency learning is introduced via modeling instance-level and cluster-level partition invariance to coordinate the clustering partition of various views, which ensures the robustness of multi-view data pattern mining. Seamless collaboration between two components effectively enhances multi-view clustering performance. Finally, comprehensive experiments on four real-world datasets demonstrate CommonMVC establishes a new state-of-the-art baseline for the MVC task.
Suggested Citation
Yanyan Wen & Haifeng Li, 2025.
"Cluster Complementarity and Consistency Mining for Multi-View Representation Learning,"
Mathematics, MDPI, vol. 13(15), pages 1-15, August.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:15:p:2521-:d:1718250
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2521-:d:1718250. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.