IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2464-d1713993.html
   My bibliography  Save this article

A Mathematical Survey of Image Deep Edge Detection Algorithms: From Convolution to Attention

Author

Listed:
  • Gang Hu

    (Department of Computer Information Systems, SUNY Buffalo State University, Buffalo, NY 14222, USA)

Abstract

Edge detection, a cornerstone of computer vision, identifies intensity discontinuities in images, enabling applications from object recognition to autonomous navigation. This survey presents a mathematically grounded analysis of edge detection’s evolution, spanning traditional gradient-based methods, convolutional neural networks (CNNs), attention-driven architectures, transformer-backbone models, and generative paradigms. Beginning with Sobel and Canny’s kernel-based approaches, we trace the shift to data-driven CNNs like Holistically Nested Edge Detection (HED) and Bidirectional Cascade Network (BDCN), which leverage multi-scale supervision and achieve ODS (Optimal Dataset Scale) scores 0.788 and 0.806, respectively. Attention mechanisms, as in EdgeNAT (ODS 0.860) and RankED (ODS 0.824), enhance global context, while generative models like GED (ODS 0.870) achieve state-of-the-art precision via diffusion and GAN frameworks. Evaluated on BSDS500 and NYUDv2, these methods highlight a trajectory toward accuracy and robustness, yet challenges in efficiency, generalization, and multi-modal integration persist. By synthesizing mathematical formulations, performance metrics, and future directions, this survey equips researchers with a comprehensive understanding of edge detection’s past, present, and potential, bridging theoretical insights with practical advancements.

Suggested Citation

  • Gang Hu, 2025. "A Mathematical Survey of Image Deep Edge Detection Algorithms: From Convolution to Attention," Mathematics, MDPI, vol. 13(15), pages 1-24, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2464-:d:1713993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2464/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2464-:d:1713993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.