IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2443-d1712649.html
   My bibliography  Save this article

Synthesis of Sources of Common Randomness Based on Keystream Generators with Shared Secret Keys

Author

Listed:
  • Dejan Cizelj

    (Vlatacom Institute of High Technology, Milutina Milankovica 5, 11070 Belgrade, Serbia
    Technical Faculty, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia)

  • Milan Milosavljević

    (Vlatacom Institute of High Technology, Milutina Milankovica 5, 11070 Belgrade, Serbia)

  • Jelica Radomirović

    (Vlatacom Institute of High Technology, Milutina Milankovica 5, 11070 Belgrade, Serbia
    School of Electrical Engineering, Belgrade University, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia)

  • Nikola Latinović

    (Vlatacom Institute of High Technology, Milutina Milankovica 5, 11070 Belgrade, Serbia)

  • Tomislav Unkašević

    (Vlatacom Institute of High Technology, Milutina Milankovica 5, 11070 Belgrade, Serbia)

  • Miljan Vučetić

    (Vlatacom Institute of High Technology, Milutina Milankovica 5, 11070 Belgrade, Serbia
    Technical Faculty, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia)

Abstract

Secure autonomous secret key distillation (SKD) systems traditionally depend on external common randomness (CR) sources, which often suffer from instability and limited reliability over long-term operation. In this work, we propose a novel SKD architecture that synthesizes CR by combining a keystream of a shared-key keystream generator K S G ( K G ) with locally generated binary Bernoulli noise. This construction emulates the statistical properties of the classical Maurer satellite scenario while enabling deterministic control over key parameters such as bit error rate, entropy, and leakage rate (LR). We derive a closed-form lower bound on the equivocation of the shared-secret key K G from the viewpoint of an adversary with access to public reconciliation data. This allows us to define an admissible operational region in which the system guarantees long-term secrecy through periodic key refreshes, without relying on advantage distillation. We integrate the Winnow protocol as the information reconciliation mechanism, optimized for short block lengths ( N = 8 ), and analyze its performance in terms of efficiency, LR, and final key disagreement rate (KDR). The proposed system operates in two modes: ideal secrecy, achieving secret key rates up to 22% under stringent constraints (KDR < 10 −5 , LR < 10 −10 ), and perfect secrecy mode, which approximately halves the key rate. Notably, these security guarantees are achieved autonomously, without reliance on advantage distillation or external CR sources. Theoretical findings are further supported by experimental verification demonstrating the practical viability of the proposed system under realistic conditions. This study introduces, for the first time, an autonomous CR-based SKD system with provable security performance independent of communication channels or external randomness, thus enhancing the practical viability of secure key distribution schemes.

Suggested Citation

  • Dejan Cizelj & Milan Milosavljević & Jelica Radomirović & Nikola Latinović & Tomislav Unkašević & Miljan Vučetić, 2025. "Synthesis of Sources of Common Randomness Based on Keystream Generators with Shared Secret Keys," Mathematics, MDPI, vol. 13(15), pages 1-37, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2443-:d:1712649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2443/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2443-:d:1712649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.