IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i14p2306-d1705025.html
   My bibliography  Save this article

AI-Enabled Condition Monitoring Framework for Autonomous Pavement-Sweeping Robots

Author

Listed:
  • Sathian Pookkuttath

    (Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore)

  • Aung Kyaw Zin

    (Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore)

  • Akhil Jayadeep

    (Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore)

  • M. A. Viraj J. Muthugala

    (Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore)

  • Mohan Rajesh Elara

    (Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore)

Abstract

The demand for large-scale, heavy-duty autonomous pavement-sweeping robots is rising due to urban growth, hygiene needs, and labor shortages. Ensuring their health and safe operation in dynamic outdoor environments is vital, as terrain unevenness and slope gradients can accelerate wear, increase maintenance costs, and pose safety risks. This study introduces an AI-driven condition monitoring (CM) framework designed to detect terrain unevenness and slope gradients in real time, distinguishing between safe and unsafe conditions. As system vibration levels and energy consumption vary with terrain unevenness and slope gradients, vibration and current data are collected for five CM classes identified: safe, moderately safe terrain, moderately safe slope, unsafe terrain, and unsafe slope. A simple-structured one-dimensional convolutional neural network (1D CNN) model is developed for fast and accurate prediction of the safe to unsafe classes for real-time application. An in-house developed large-scale autonomous pavement-sweeping robot, PANTHERA 2.0, is used for data collection and real-time experiments. The training dataset is generated by extracting representative vibration and heterogeneous slope data using three types of interoceptive sensors mounted in different zones of the robot. These sensors complement each other to enable accurate class prediction. The dataset includes angular velocity data from an IMU, vibration acceleration data from three vibration sensors, and current consumption data from three current sensors attached to the key motors. A CM-map framework is developed for real-time monitoring of the robot by fusing the predicted anomalous classes onto a 3D occupancy map of the workspace. The performance of the trained CM framework is evaluated through offline and real-time field trials using statistical measurement metrics, achieving an average class prediction accuracy of 92% and 90.8%, respectively. This demonstrates that the proposed CM framework enables maintenance teams to take timely and appropriate actions, including the adoption of suitable maintenance strategies.

Suggested Citation

  • Sathian Pookkuttath & Aung Kyaw Zin & Akhil Jayadeep & M. A. Viraj J. Muthugala & Mohan Rajesh Elara, 2025. "AI-Enabled Condition Monitoring Framework for Autonomous Pavement-Sweeping Robots," Mathematics, MDPI, vol. 13(14), pages 1-25, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2306-:d:1705025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/14/2306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/14/2306/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2306-:d:1705025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.